Quasicrystals A story of unusual long-range order

Paweł Kuczera

Laboratory for Crystallography ETH Zurich

Faculty of Physics and Applied Computer Science AGH Krakow

The story goes back to 1982

the second		AL- 25 4/0 M	n April 6,62
17 25 1727 03 03 01 01 01 01 01 01 01 01 01 01 01 01 01	101 112 111 112 111 112 111 112 112 1	$\begin{array}{c c} & $$40\\ & $40\\ A & $25k\\ 3 & 17k\\ M & $36k\\ 5 & $6\\ 3 & $6k\\ 5 & $6k\\ 5 & $6k\\ 5 & $6k\\ 6 & $36k\\ 6 & $36k\\ 6 & $34k\\ 6 & $6k\\ 6 & $34k\\ 6 & $6k\\ 6 & $1600\\ 1 & $1600\\ 2 & $36k\\ 6 & $6k\\ 6 & $$	G(1 11)

Dan Shechtman receiving 2011 Chemistry Nobel Prize

First paper in ... 1984

VOLUME 53, NUMBER 20

PHYSICAL REVIEW LETTERS

12 NOVEMBER 1984

Metallic Phase with Long-Range Orientational Order and No Translational Symmetry

D. Shechtman and I. Blech

Department of Materials Engineering, Israel Institute of Technology-Technion, 3200 Haifa, Israel

and

D. Gratias

Centre d'Etudes de Chimie Métallurgique, Centre National de la Recherche Scientifique, F-94400 Vitry, France

and

J. W. Cahn

Center for Materials Science, National Bureau of Standards, Gaithersburg, Maryland 20760 (Received 9 October 1984)

We have observed a metallic solid (Al-14-at.%-Mn) with long-range orientational order, but with icosahedral point group symmetry, which is inconsistent with lattice translations. Its diffraction spots are as sharp as those of crystals but cannot be indexed to any Bravais lattice. The solid is metastable and forms from the melt by a first-order transition.

PACS numbers: 61.50.Em, 61.55.Hg, 64.70.Ew

First paper in ... 1984

Quasicrystals (QCs)

- What are quasicrystals?
 - According to the definition they are (aperiodic) crystals!
 - They do not posses 3D periodicity
 - Crystals in general are identified by "an essentially discrete diffraction pattern" (*Comission on Aperiodic Crystals, 1992*)
 - Nobel Prize in Chemistry 2011 for Dan Shechtman
- Icosahedral (IQC)
 - Shechtman *et al.*, 1984, Dubost *et al.*, 1986
 - Aperiodic in 3D
 - Mackay-, Bergman-, or Tsai-type
- Decagonal (DQC)
 - Bendersky, 1985; He *et al.*, 1988
 - Aperiodic in 2D, so-called axial QCs
 - 2-, 4-, 6-, 8-layer periodicity
 - Al-based and Zn-Mg-RE

Quasicrystals (QCs)

- What are quasicrystals?
 - According to the definition they are (aperiodic) crystals!
 - They do not posses 3D periodicity
 - Crystals in general are identified by "an essentially discrete diffraction pattern" (*Comission on Aperiodic Crystals, 1992*)
 - Nobel Prize in Chemistry 2011 for Dan Shechtman
- Icosahedral (IQC)
 - Shechtman et al., 1984, Dobost et al., 1986
 - Aperiodic in 3D
 - Mackay-, Bergman-, or Tsai-type
- Decagonal (DQC)
 - Bendersky, 1985; He *et al.*, 1988
 - Aperiodic in 2D, so-called axial QCs
 - 2-, 4-, 6-, 8-layer periodicity
 - Al-based and Zn-Mg-RE

Fot. A.P. Tsai

Structural investigations of quasicrystals

Diffraction pattern. "classical" crystal vs. quasicrystal

Al-Cu-Ta, cubic (a = 71.5 Å) $F\overline{4}3m$

Weber *et al.,* Acta Cryst. B, 2009 PSI, Switzerland, PILATUS (pixel detector)

Al-Cu-Rh, decagonal quasicrystal *P*10₅/*mmc* Kuczera *et al.*, Acta Cryst. B, 2012 SNBL, ESRF Grenoble, CCD detector

Diffraction pattern. "classical" crystal vs. quasicrystal

Al-Cu-Ta, cubic (*a* = 71.5 Å) *F*43*m*

Weber *et al.,* Acta Cryst. B, 2009 PSI, Switzerland, PILATUS (pixel detector)

Al-Cu-Rh, decagonal quasicrystal *P*10₅/*mmc* Kuczera *et al.*, Acta Cryst. B, 2012 SNBL, ESRF Grenoble, CCD detector

Penrose tilings

Rhombic PT

Pentagonal PT

Gummelt covering

Information obtained from diffraction pattern directly *e.g.* d-Al-Cu-Rh

- Periodic stacking of aperiodic layers
- 10/mmm Laue class
- Systematic extinctions screw axis and/or *c*-glide plane present
- Possible space groups
 - <u>P10₅/mmc</u>
 - P10₅mc
 - P102c

hk0

Structure solution Charge Flipping Algorithm & SUPERFLIP $I(\mathbf{k}) = |F(\mathbf{k})|^2 \xrightarrow{FT} g(\mathbf{r})$ Patterson function

Structure solution Charge Flipping Algorithm & SUPERFLIP $I(\mathbf{k}) = |F(\mathbf{k})|^2 \xrightarrow{FT} g(\mathbf{r})$ Patterson function

Random phases $|F(\mathbf{k})| \longrightarrow |F(\mathbf{k})| \exp(i\phi_{\mathbf{k}})$

ALGORITHM: Oszlanyi & Suto, 2008 SUPERFLIP PROGRAM: Palatinus & Chapuis, 2007

SUPERFLIP solution Modeling example d-Al-Cu-Rh

Projection along the tenfold axis

Modeling example: d-Al-Cu-Rh

Projection along the tenfold axis

Modeling example d-Al-Cu-Rh; The cluster structure

Modeling example d-Al-Cu-Rh; The cluster structure

Modeling example d-Al-Cu-Rh; The cluster structure

What about the structure factor?

Refinement results d-Al-Cu-Rh

R[F /σ > 1]	0.079	No. of refl.	2174
R[F /σ > 3]	0.060	No. of params.	245
wR[F /σ > 1]	0.086	Chem. comp.	$AI_{61.9}Cu_{18.5}Rh_{19.6}$
wR[F /σ > 3]	0.077	Refined comp.	$AI_{60.6}Cu_{19.2}Rh_{20.2}$

Refinement results.

Projection along the tenfold axis

Refinement results.

Projection along the tenfold axis

Quasicrystalline long-range order *Monte Carlo simulations*

nD approach - Fibonacci chain

nD approach - Fibonacci chain

)-(

How to quantify the quasiperiodic LRO?

How to quantify the quasiperiodic LRO?

How to quantify the quasiperiodic LRO?

How do we "grow" tilings?

Bake & Grimm, Chem. Soc. Rev. (2011) 41 6821

Bake & Grimm, Chem. Soc. Rev. (2011) 41 6821

Bake & Grimm, Chem. Soc. Rev. (2011) 41 6821

Close relations of RPT, GPR & GC

Close relations of RPT, GPR & GC

How does a real cluster look like?

How does a real cluster look like?

Idea – Monte Carlo simulation

The tiling/covering can be modified by phason flips:

• E + 1 for every violation of matching rules

Idea – Monte Carlo simulation

The tiling/covering can be modified by phason flips:

• E + 1 for every violation of matching rules

It does not work Tang & Jaric (1990); Reicher & Gaehler (2003)

Idea – Monte Carlo simulation

The tiling/covering can be modified by phason flips:

Neither does MD with Lenard-Gauss-Jones pot.

Engel et al. (2010); Kiselev et al. (2012)

The concept of quasilattice planes -QLPs-(flat atomic layers)

- There are three typical interplanar distances between the QLPs: d₁, d₂, d₃
- $d_1 = 0.5 \cdot a(3-\tau)^{0.5}$,

•
$$d_2 = d_1/\tau$$

•
$$d_3 = d_2/\tau$$
 ,

- $\tau \approx 1.618$
- Every second distance is d_2 , distances d_1 and d_3 occur according to the Fibonacci sequence

Hoffmann & Trebin, Phys. Stat. Sol. B (1992) ,174 304

A QLP – filed

A QLP – filed

The model

- It is favorable for the clusters to arrange in such a way, that QLPs are continued from cluster to cluster.
- Cluster interact via QLP field (virtual).
- Energy of a cluster is computed based on the MFA
- Every cluster feels the "average" QLP field produced by the remaining clusters.
- Such system is subjected to MC modeling.
- Two models:
 - infinite interaction range
 - finite interaction (r = 3)

The two sublattices

The two length-scales

Order-disorder pahse transition(s)

Order-disorder pahse transition(s)

Order-disorder pahse transition(s)

Order parameter, susceptibility

$$N = 465, 1585$$
$$\chi = \frac{1}{T} (\langle OP^2 \rangle - \langle OP \rangle^2)$$

N = 465

$$\chi = \frac{1}{T} (\langle OP^2 \rangle - \langle OP \rangle^2)$$

Quasicrystals – recent discoveries

Quasicrystals from oxide surfaces BaTiO₃ on Pt(111)

S. Forster *et al.,* Nature **502** (2013), 215-218

 $4 \times 4 \text{ nm}^2$, 30 pA, 0.1 V

Self-assembly of "soft" quasicrystala in laser potential

J. Mikhael et al., Nature 454 (2008), 5501-504

Micles forming 12-fold and 18-fold quasicrystals

S. Fischer et al., PNAS 108 (2011), 1810-1814

RE-Cd magnetic QC low-T spin glass

T (K)

Summary

- The structure of DQC can be refined in the RPT framework "two unit tiles".
- Using the concept of QLP field and MFA it is possible to obtain a quasiperiodic ground state.
- There are two unlocking phase transitions for the two length scales in the system.
- The key features of the model are:
 - Asymmetricity of the effective interactions.
 - Interaction range beyond nearest neighbors
- The QLP field computed in a self consistent way
- QLPs could be responsible for propagation of LRO

Acknowledgements

- Group in Krakow:
 - Janusz Wolny, Radoslaw Strzałka, Maciej Chodyń
- Group in Zurich:
 - Walter Steurer, Julia Dshemuchadse, Taylan Ors, Frank Fleisher
- SNBL scientists:
 - Phil Pattison, Dmitry Chernyshov, Vadim Dyadkin
- Founding:
 - SNF
 - SCIEX
 - NCN
- YOU for your attention

The ongoing fight: E vs. S?

F = E - TS

- Each defect increases both *E* and *TS* terms
- Entropy stabilization:
 - Random tiling at high T
 - Approximant structure at low T
- Energy stabilization:
 - Quasiperiodic long-range ordered ground state (stable at OK)
 - Possibility of order-disorder phase transition so called unlocking phase transition

Single crystal growth

Single crystal growth

Diffraction measurements @SNBL, Grenoble

Structure solution Charge Flipping Algorithm & SUPERFLIP $I(\mathbf{k}) = |F(\mathbf{k})|^2 \xrightarrow{FT} g(\mathbf{r})$ Patterson function

Structure solution Charge Flipping Algorithm & SUPERFLIP $I(\mathbf{k}) = |F(\mathbf{k})|^2 \xrightarrow{FT} g(\mathbf{r})$ Patterson function

Random phases $|F(\mathbf{k})| \longrightarrow |F(\mathbf{k})| \exp(i\phi_{\mathbf{k}})$

ALGORITHM: Oszlanyi & Suto, 2008 SUPERFLIP PROGRAM: Palatinus & Chapuis, 2007

Modeling example d-Al-Cu-Rh; HRTEM study – 33 Å cluster

Hiraga et al., Phil. Mag., 2001