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The story goes back to 1982

Dan Shechtman receiving  
2011 Chemistry Nobel Prize



First paper in … 1984



First paper in … 1984



• What are quasicrystals?
• According to the definition – they are (aperiodic) crystals!
• They do not posses 3D periodicity
• Crystals in general are identified by “an essentially discrete 

diffraction pattern” (Comission on Aperiodic Crystals, 1992)
• Nobel Prize in Chemistry 2011 for Dan Shechtman

• Icosahedral (IQC) 
• Shechtman et al., 1984, Dubost et al., 1986
• Aperiodic in 3D
• Mackay-, Bergman-, or Tsai-type

• Decagonal (DQC)
• Bendersky, 1985; He et al., 1988
• Aperiodic in 2D, so-called axial QCs
• 2-, 4-, 6-, 8-layer periodicity

• Al-based and Zn-Mg-RE 
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Structural investigations of quasicrystals



Al-Cu-Ta, cubic (a = 71.5 Å)
F43m
Weber et al., Acta Cryst. B, 2009
PSI, Switzerland, PILATUS (pixel detector)

Al-Cu-Rh, decagonal quasicrystal
P105/mmc
Kuczera et al., Acta Cryst. B, 2012
SNBL, ESRF Grenoble, CCD detector

Diffraction pattern. 
“classical” crystal vs. quasicrystal
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• There can be no 
periodicity and hence 
unit cell in 3D space.

• How do we deal with the 
diffraction pattern ?

• What is the long-range 
order ?

• How do we describe the 
structure ?



Theoretical problems – (quasi)lattice?
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Penrose tilings

Pentagonal PT
Rhombic PT



Gummelt covering



hk0

• Periodic stacking of 
aperiodic layers

• 10/mmm Laue class

• Systematic extinctions –
screw axis and/or c-glide 
plane present

• Possible space groups

• P105/mmc

• P105mc

• P102c

hk1

0kl h0l

Information obtained from diffraction 
pattern directly e.g. d-Al-Cu-Rh



FT
Patterson function

Structure solution 
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FT
Patterson function

FT-1

FT

ALGORITHM: Oszlanyi & Suto, 2008
SUPERFLIP PROGRAM: Palatinus & Chapuis, 2007

Random phases

Structure solution 
Charge Flipping Algorithm & SUPERFLIP
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SUPERFLIP solution
Modeling example d-Al-Cu-Rh

Projection along the tenfold axis



Modeling example: d-Al-Cu-Rh

Projection along the tenfold axis



Al

Cu

Rh

Modeling example d-Al-Cu-Rh; 
The cluster structure
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What about the structure factor?

𝐹𝑇 𝜚 =  

𝛼

𝐹𝑇(𝑳𝐴𝑈𝐶)  

𝑎𝑡𝑜𝑚𝑠

𝑓 𝐤 𝑒𝑥𝑝(𝑖𝐤 ⋅ 𝐫) + 

𝛼

𝐹𝑇(𝑺𝐴𝑈𝐶)  

𝑎𝑡𝑜𝑚𝑠

𝑓 𝐤 𝑒𝑥𝑝(𝑖𝐤 ⋅ 𝐫)

It is possible to calculate the 
structure factor*

Works of prof. Janusz Wolny &Co.



Refinement results d-Al-Cu-Rh

R[|F|/σ > 1] 0.079 No. of refl. 2174

R[|F|/σ > 3] 0.060 No. of params. 245

wR[|F|/σ > 1] 0.086 Chem. comp. Al61.9Cu18.5Rh19.6

wR[|F|/σ > 3] 0.077 Refined comp. Al60.6Cu19.2Rh20.2



Red – Rh
Green – Cu
Blue - Al

Refinement results. 

Projection along the tenfold axis



Red – Rh
Green – Cu
Blue - Al

Refinement results. 

Projection along the tenfold axis



Quasicrystalline long-range order

Monte Carlo simulations



nD approach - Fibonacci chain



nD approach - Fibonacci chain



How to quantify the quasiperiodic LRO?
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How do we “grow” tilings?



Matching rules / overlap rules
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Close relations of RPT, GPR & GC
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How does a real cluster look like?

Kuczera et. al, Acta Cryst B (2012) 68 578 
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Phason Flips

• A tiling/covering can be modified by phason flips:
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Idea – Monte Carlo simulation

The tiling/covering can be modified by phason flips:

It does not work 

• 𝐸 + 1 for every violation of matching rules

Tang & Jaric (1990); Reicher & Gaehler (2003)

Neither does MD with Lenard-Gauss-Jones pot.

Engel et al. (2010); Kiselev et al. (2012)



The concept of quasilattice planes
-QLPs-

(flat atomic layers)
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QLPs

Hoffmann & Trebin, Phys. Stat. Sol. B (1992) ,174 304

• There are three typical 
interplanar distances between 
the QLPs: 𝑑1, 𝑑2, 𝑑3

• 𝑑1 = 0.5 ⋅ 𝑎 3 − 𝜏
0.5,

• 𝑑2 =  𝑑1 𝜏
• 𝑑3 =  𝑑2 𝜏 , 
• 𝜏 ≈ 1.618
• Every second distance is 𝑑2, 

distances 𝑑1 and 𝑑3 occur 
according to the Fibonacci 
sequence



QLPs – How about reality?

Kuczera et. al, Acta Cryst B (2012) 68 578 
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A QLP – filed



A QLP – filed

Not radially symmetric!



The model
• It is favorable for the clusters to arrange in such a 

way, that QLPs are continued from cluster to cluster.

• Cluster interact via QLP field (virtual).

• Energy of a cluster is computed based on the MFA

• Every cluster feels the “average” QLP field produced 
by the remaining clusters.

• Such system is subjected to MC modeling.

• Two models:
• infinite interaction range

• finite interaction (r = 3) 



The two sublattices



The two length-scales



Order-disorder pahse transition(s)
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Order parameter, susceptibility

𝑁 = 465, 1585

𝜒 =
1

𝑇
𝑂𝑃2 − 𝑂𝑃 2

𝑁 = 465

𝜒 =
1

𝑇
𝑂𝑃2 − 𝑂𝑃 2



Quasicrystals – recent discoveries



Quasicrystals from oxide surfaces 
BaTiO3 on Pt(111)

S. Forster et al., Nature 502
(2013), 215-218



Self-assembly of “soft” quasicrystala
in laser potential

J. Mikhael et al., Nature 454 (2008), 5501-504



Micles forming 
12-fold and 18-fold quasicrystals

S. Fischer et al., PNAS 108 (2011), 1810-1814



RE-Cd magnetic QC 
low-T spin glass

QC:                    RCd7.75(0.25)

Approximant:  RCd6

A. Glodman et al., Nature Materials 12 (2013), 714-718)



Summary
• The structure of DQC can be refined in the RPT 

framework – “two unit tiles”.

• Using the concept of QLP field and MFA it is 
possible to obtain a quasiperiodic ground state.

• There are two unlocking phase transitions for the 
two length scales in the system.

• The key features of the model are:
• Asymmetricity of the effective interactions.

• Interaction range – beyond nearest neighbors

• The QLP field computed in a self consistent way

• QLPs could be responsible for propagation of LRO
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The ongoing fight: E vs. S?

𝐹 = 𝐸 − 𝑇𝑆
• Each defect increases both E and TS terms

• Entropy stabilization:
• Random tiling at high T

• Approximant structure at low T

• Energy stabilization:
• Quasiperiodic long-range ordered ground state (stable at 0K)

• Possibility of order-disorder phase transition – so called 
unlocking phase transition





Single crystal  growth



Single crystal  growth



Diffraction measurements @SNBL, Grenoble



Reciprocal space basis selection
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Reciprocal space basis selection

𝜏 =
1 + 5
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Reciprocal space basis selection

• The diffraction pattern is discrete but (theoretically) 
infinitely dense!

• What is a complete diffraction pattern?
• How to integrate the experimental data?

𝜏 =
1 + 5

2
≈ 1.618
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Hiraga et al., Phil. Mag., 2001

Modeling example d-Al-Cu-Rh; 
HRTEM study – 33 Å cluster


