

AGH

Badanie lekkich egzotycznych jąder w Laboratorium Reakcji Jądrowych ZIBJ w Dubnej. Praktyki dla studentów w ZIBJ

Grzegorz Kamiński Laboratorium Reakcji Jądrowych, ZIBJ, Dubna Instytut Fizyki Jądrowej PAN, Kraków

Outline

Flerov Laboratory of Nuclear Reactions

- ✓ The area of study
- ✓ Light exotic nuclei at ACCULINNA
- ✓ Separator: Principle of operation
- ✓ Key equipment
- ✓ Results

"Project" - ACCULINNA-2

- ✓ Status of the project
- First day experiments

Optical Time Projection Chamber (OTPC)

- \checkmark β-delayed particle emmision
- ✓ OTPC how does it work?
- ✓ Recent studies with the OTPC
- ✓ Nearest plans- β -delayed particle emission of ²⁷S

Possibilities for students at JINR

- ✓ Summer trainings
- Individual visits
- ✓ Short term & long term contracts

JINR at Dubna map

JINR Laboratories

Veksler and Baldin Laboratory of High Energy Physics

Bogoliubov Laboratory of Theoretical Physics

Dzhelepov Laboratory of Nuclear Problems

Flerov Laboratory of Nuclear Reactions

Laboratory of Information Technologies

Laboratory of Radiation Biology

Frank Laboratory of Neutron Physics

Flerov Laboratory of Nuclear Reactions (FLNR)

The main activities at FLNR

• Experiments with heavy ion beams of stable and radioactve nuclei:

- ✓ Synthesis of superheavy elements
- ✓ Study of fusion and fission of atomic niclei
 - ✓ Study of nuclear reaction mechanisms
 - ✓ Study of the structure of exotic nuclei

Dubna

O Developpment of acceleration techniques

- ✓ cyclotrons
- ✓ ECR ion sources ECR

O Applied study

- / Track membrans
- Nanostructures
- Study of materials properties
 - Activations analysis

Flerov Laboratory of Nuclear Reactions (FLNR)

FLNR ACCELERATOR COMPLEXES

U400 - Accelerator complex based on U400 isochronous cyclotron was put into operation in 1979. U400 accelerator is Laboratory's basic setup for synthesis of new elements.

U400M - Accelerator complex based on U400M isochronous cyclotron was put into operation in 1993. In 2002 this cyclotron was included in DRIBs accelerator complex designed for production of radioactive ion beams

U200 - Accelerator complex based on U200 isochronous cyclotron was put into operation in 1968. At present U200 cyclotron is used for production of ultraclean radioisotopes for ecology and nuclear medicine.

DC-40 (IC-100) - Cyclotron complex is the full-scale upgrade of IC-100 cycle implanter. Designed for high technology and applied research.

MT-25 - Microtron electron accelerator was put into operation in 1973 (MT-17). It was totally upgraded in 1980 (MT-22) and in 1986 (MT-25). This microtron is used for study and production of ultraclean radioisotopes.

ACCULINNA

Physical tool: projectile fragmentation reaction

Abrasion/Ablation Model

Nuclear reaction -Many different reaction products separated by magnetic field Seminarium AGH, 20 maja separated products

AG H

ACCULINNA - separator scheme

THEORY JINR, FLNR: LG, Yu. Parfenova, P. Sharov JINR, BLTP: S. Ershov, I. Egorova Geteborg University: M. Zhukov

EXPERIMENT

AGH

JINR, FLNR: A. Fomichev, M. Golovkov, S. Sidorchuk, G. Ter-Akopian, A.Bezbakh, R. Wolski (IFJ PAN), A. Gorshkov, V. Gorshkov, R. Slepnev, G. Kaminski (IFJ PAN), S. Krupko, V. Chudoba, M. Mentel (AGH), P. Pluciński (AGH)

> Kurchatov Institute: E. Nikolskii, E. Kuzmin RNFC Sarov: A. Yukhimchuk, S. Filchagin, A. Kirdyashkin PTI St. Petersburg: V. Eremin

saw University: M. Pfutzner, W. Dominik, Z. Janas, L. Janiak, K. Miernik, S. Mianowski, C. Seminarium AGH, 20 maja Mazzocc<code>fi4</code>M.Pomorski

GSI, Darmstadt: H. Simon, I. Mukha, Ch. Scheidenberger

Key equipment of the ACCULINNA separator

✓ Cryogenic tritium target system & correlation measurements

✓ Neutron detection system – stilbene crystals

✓ Optical Time Projection Chamber (OTPC) at ACCULINNA (collaboration with University of Warsaw)

Cryogenic tritium target charged particles detectors & neutron detectors, crystal size 80(\emptyset) x 50 mm³

Physical unique targets H, He

Basic scheme of the complex.

FS—filling system; RS—tritium recovery and radiation monitoring system; RC—reaction chamber; TT—tritium target; GSE—gas supply/evacuation line; BS1(2)—hydrogen (deuterium) source; BS3—tritium source; BS4, BS5—traps;
GC, GC1—helium gas-cylinders; D1, D2—pressure gauges; D3, D4—vacuum gauges; FP1, FP2—vacuum pumps (BOC EDWARDS GVSP 30); TMP1, TMP2—turbo pumps (STR-300M); MV—measuring vessel (270 cm3); G1, G2—getters; VE1–VE6 valves (open circles show all other valves); IC1, IC2—ionization chambers; VM1, VM2—vacuum gauges blocking the gas release in ventilation in excess of a given level of the gas-specific volumetric activity.

A.A. Yukhimchuk et al., NIM A513 (2003) 439. <u>Gas:</u> $\phi=25 \text{ mm}, d=3\div6 \text{ mm},$ T=26 K, P=0.92 Atm, $x=3*10^{20} \text{ Atm/cm}^2$ <u>Liquid:</u> $\phi=20 \text{ mm}, d=0.4\div0.8 \text{ mm},$ $w=2x8.4 \mu \text{ stainless steel},$ $x=1.1*10^{21} \text{ Atm/cm}^2$ $I \le 960 \text{ Ci} (3.54*10^{13} \text{ Bq})$ 16

experimental area: reaction chamber, detectors and DAQ

Seminarium AGH, 20 maja

⁸He&¹⁰He: ³H(⁶He,p)⁸He & ³H(⁸He,p)¹⁰He reactions

- Slow protons registered in the backward direction, what limits the maximal ⁸He and ¹⁰He excitation energy to about 14 and 17 MeV.
- ⁽²⁷⁾ ^{8,10}He registered in the forward telescope. Neutrons are registered by 49 DEMON modules.
- It's complete kinematics reconstruction.

Seminarium AGH, 20 maja

Neutron detection

AGH

Some results

In the recent years using ACCULINNA separator, new results were obtained for such isotopes as: ⁴H[1], ⁵H [2-4], ⁷H [5], ⁶He [10], ⁸He [6], ⁹He [7], ²⁶S [8], ⁶Be [9] and ¹⁰He [6, 11]: [1] S.I. Sidorchuk et al., Phys. Lett. B 594 (2012) 54; [2] A.A. Korsheninnikov *et al.*, Phys. Rev. Lett. 87, 092501 (2001); [3] M.S. Golovkov *et al.*, Phys. Lett. B 566, 70 (2003); [4] M.S. Golovkov et al., Phys. Rev. Lett. 93, 262501 (2004); [5] M.S. Golovkov *et al.*, Phys. Lett. B 588, 163 (2004); [6] M.S. Golovkov *et al.*, Phys. Lett. B 672, 22 (2009); [7] M.S. Golovkov *et al.*, Phys. Rev. C 76, 021605(R) (2007); [8] A.S. Fomichev *et al.*, Int. J. Mod. Phys. E 20, 1491 (2011); [9] A.S. Fomichev *et al.*, Phys. Lett. B 708, 6 (2012); [10] S.I. Sidorchuk et al., Nucl. Phys. A 840, 1 (2010); [11] S.I. Sidorchuk et al., Phys. Rev. Lett. 108, 202502 (2012). http://aculina.jinr.ru -> publications Small, simple separator need to be upgraded for more novel results !!! Its needed to be competetive for further studies with exotic nuclei !!! F1 beam urget& D1)=(Droje) ondar tem narium AGH. 20 maja 22 F2 Plastic

Separator ACCULINNA 2

Seminarium AGH, 20 maja

2010 year: Should we upgrade ACCULINNA-1?

Acculinna2 in perspective

Characteristics of existing and new in-flight RIB separators (ΔΩ and Δp/p are angular and momentum acceptances, Rp/Δp is the firstorder momentum resolution when 1 mm object size is assumed)

	ACC / ACC-2 FLNR JINR	RIPS / BigRIBS RIKEN	A1900 MSU	FRS / SuperFRS GSI	LISE3 GANIL
ΔΩ, msr	0.9 / 5.8	5.0 / 8.0	8.0	0.32 / 5.0	1.0
∆p/p, %	± 2.5 / ± 3.0	± 3.0 / 6.0	± 5.5	± 2.0 / 5.0	± 5.0
Rp/∆p	1000 / 2000	1500 / 3300	2915	8600 / 3050	2200
Bρ, Tm	3.2 / 3.9	5.76 / 9.0	6.0	18 / 18	3.2 - 4.3
Length, m	21 / 38	27 / 77	35	74 / 140	19(42)
E, AMeV	10÷40 / 6÷60	50÷90 / 350	110÷160	220÷1000/1500	40÷80
Additional RIB Filter	No / RF-kicker	RF-kicker / S-form	S-form & RF- kicker	S-form / Preseparator	Wien Filter

ACCULINNA-2 project

Seminarium AGH, 20 maja

In the beginning of the project at experimental hall

« In the beginning, there was Chaos » Greek Mythology – The Creation

Seminarium AGH, 20 maja

Magnets: some big ones

ACCULINNA-2, instalation of the sections F1-F2

00

00

AGH

January 2015

Installation process: i) all magnets and vacuum chambers in the cyclotron hall; ii) power supplies

31

ACCULINNA-2, instalation at the experimental hall

February - March 2015

Installation in F3-F5 area: i) floor reinforcement ii) rest magnets & communications iii) new cabin

ACCULINNA-2, instalation of the section F3 – F5

AGH

ACCULINNA-2: plans for 2016-2017

Proposed scenario

first-first runs:

Possibility to combine commissioning with short experiment @ relatively low RIB intensity

²⁷S; ²³Si experiment with OTPC – P(82p), P(83p); search for 8-³He radioactivity

²⁶S study via ²⁸S(p,t)²⁶S – observation, levels, $T_{1/2}$

First day experiments:

Maximum advantages of the new separator @ high RIB intensity, average exposure, experience

¹⁷Ne via ¹⁸Ne(p,d)¹⁷Ne* – 2p decay for 3/2⁻, combined mass
 ¹⁶Ne via ¹⁸Ne(p,t)¹⁶Ne – level structure, missing mass
 ⁷H populated in QFS ¹¹Li(α,2α)⁷H - observation, E and Γ of the ground state
 ¹⁰Li via ¹¹Li(p,d)¹⁰Li E and Γ for ground state, combined mass

Future plans (company with tritium target):

Maximum advantages of the new separator @ high RIB intensity, very long exposure, experience, T-target

 ¹⁰He via ⁸He(t,p)¹⁰He – level structure, decay modes, combined mass Seminarium AGH, 20 maja
 ¹⁶Be via ¹⁴Be(t,p)¹⁶Be – level structure, decay modes, combined mass

34

ACCULINNA-2: beam intensity ~20 time more than@ACCULINA

	20 404		<u> </u>			_						
P rojectile		PROJECTI							11	-1-1011000		
54 MeV/u 1	000 pnA 18N - 10+	FRAGMEN	IT					1		, 1 <mark></mark>		
		<u> </u>	in the second					AN A				
	Be 300 micror											
<mark>≭●</mark> Stripper			_T_									
₽ <u></u> D1	Brho 1.8794 Tm	$(\hat{d}p/p=1)$	32%)					²⁰ Na	²¹ Na	²² Na		
S Drift	standard 0.65 m							1.19e+5	5.81e+2			
⁰ ₪ Sext2	sextupole 0.29 m					¹⁷ Ne	¹⁸ Ne	¹⁹ Ne	²⁰ Ne	²¹ Ne	8	
S Drift	standard 0.33 m					1.61e+4	1.45e+6	2.06e+6				
Quad4	quadrupole 0.46 m					16 _F	2.954%	18 _F	facto	~ 20	.	
S Drift	standard 0.53 m					4.22e+5	2.83e+6	1.19e	Iacu)r 20		
S□F2_slits -13 H +13 -20 V +20	slits		²⁰ Ne ⁷⁺	(54 AM	1eV)	>	1.4*1	L O ⁶ p	ps ¹⁸ l	Ne		
<mark>‴.▼</mark> Wedge	Projectile	²⁰ Ne ¹⁰⁺	PRO JECTILE	<u>^</u>	~~		_	_	_	_	_	
S D Drift	54 MeV/u 1 F <mark>ragment</mark>	000 pnA 18 <mark>Ne¹⁰⁺</mark>	FRAGMENT								AL AND	
Quad5	Target	Be	(÷ /	- and the second second				11				
config:A1900 - 4	dir.	300 micron	-	A COLUMN				11	/~	- HI		
option: default	Stripper	l a 4 micron										
	D1 -4 H +4	Brho 1.8749 Tm		*					²⁰ Na	²¹ Na	²² Na	
	Wedge	Be 1000 micron							1.34e-4 0%			
	D2	Brho 1.6507 Tm			_		¹⁷ Ne	¹⁸ Ne	¹⁹ Ne	²⁰ Ne	²¹ Ne	
	-10 V +10	H10C9	(dp/p=)	1.33%)			6.16e+4				
		127 micron					16 _E	0.124% 17 _E	18 _F	19 _F	20F	
	-20 H +20 -20 V +20	7.95 m						6 5e+4			· ·	
	M∎ F4_PI	H10C9 370 micron			130	140	150	0.025%	170		190	
	F4_dE	Fe 24 micron					9 340-3	5 240+3				
	M∎ F4_E	Si 1000 micron	Seminarium A	GH. 20 m		13 _N	0%	0.001%	16 N	1785	18.	
	F4_E2	H2C 10 micron		OII, 20 III		1°N	3 45 - 14	1.00011		באיי		
	config:A1900 - 4	dipoles dp/p					0%	0%				

ACCULINNA-2: Summary and outlook

"Acculinna-2" will be put into operation in the end 2016 and first experiments with radioactive beams will be possible.

The scientific program implies an extensive use of advantages of low energy RIB's (E^10-50A MeV), and cryogenic gaseous targets (including tritium) for the study of exotic nuclei with Z \leq 36.

Intense radioactive beams available at the new facility will allow us to use experimental approaches developed earlier in studies of ^{4,5}H, ⁶Be, ^{6,8,9,10}He at the "ACCULINNA" fragment-separator.

Experiments aimed at the studies of the structure of proton rich-nuclei ^{16,17}Ne, ¹⁹Mg, ²³Si, ^{26,27}S and extremely neutron rich isotopes like ⁷H, ¹⁰He, ¹¹Li, ¹⁴Be, ¹⁹C are foreseen.
β -delayed particle emission

Seminarium AGH, 20 maja

Challenges in spectroscopic studies of drip-line nuclei

- ²⁴Al ²⁵St ²⁶O ²¹Ng ²²Mg 0 200 400 600 800 1000 1200 1400 1600
- ⁴⁵Fe 3βp 3.3(1.5)%

low production rates

high background level

need for particle correlation measurements

AGH

Optical Time Projection Chamber (OTPC) - A new type of modern ionization chamber with

Experimental tool - Optical Time Projection Chamber

• tracks are reconstructed by fitting the data with SRIM simulations

$$E_{\alpha} = 4.7 \text{ MeV}$$

 $\theta_{\alpha} = 123^{\circ}$

Seminarium AGH, 20 maja

Experiments

Study of ⁴⁸Ni with OTPC at NSCL/MSU

> NSCL/MSU, March 2011: ⁵⁸Ni at 160 MeV/u + $^{nat}Ni \rightarrow {}^{48}Ni$

Study of ⁴⁸Ni

> NSCL/MSU, March 2011: ⁵⁸Ni at 160 MeV/u + ^{nat}Ni \rightarrow ⁴⁸Ni

Study of ⁴⁸Ni

Pomorski et al., PRC 90 (14) 014311

Reconstruction of 2p decay event

β2p channel in ⁴⁶Fe

Study of ³¹Ar @FRS/GSI

Seminarium AGH, 20 maja

β 3p in ³¹Ar?

PHYSICAL REVIEW C

AGH

VOLUME 45, NUMBER 1

JANUARY 1992

Decay modes of ³¹Ar and first observation of β -delayed three-proton radioactivity

D. Bazin,* R. Del Moral, J. P. Dufour, A. Fleury, F. Hubert, and M. S. Pravikoff Centre d'Etudes Nucléaires de Bordeaux-Gradignan, Le Haut Vigneau 33175 Gradignan CEDEX, France

PHYSICAL REVIEW C

VOLUME 59, NUMBER 4

APRIL 1999

³¹Ar examined: New limit on the β -delayed three-proton branch

H. O. U. Fynbo,¹ L. Axelsson,² J. Äystö,³ M. J. G. Borge,⁴ L. M. Fraile,⁴ A. Honk A. Jokinen,³ B. Jonson,² I. Martel,^{5,†} I. Mukha,^{1,‡} T. Nilsson,^{2,§} G. Nyman,² M. Oind M. H. Smedberg,² O. Tengblad,⁴ F. Wenander,² and the ISOLDE

` (((^{||}))) AGH

³¹Ar @ the FRS

> Experiment at GSI-FRS, August 2012

"Search for two-proton decay of ³⁰Ar in flight by the tracking technique" by I. Mukha Si, veto

Seminarium AGH, 20 maja

³¹Ar @ theYes, β 3p in ³¹Ar! FRS

► A new acquisition mode – a series of shorter expositions ("movie")

β 3p in ³¹Ar

 13 events of β3p decay of ³¹Ar was observed

TABLE I. The total branching ratios for the observed decays of $^{31}\mathrm{Ar}.$ The given uncertainties are statistical.

Channel	Events	Branching [%]
eta 0 p	5984	$22.6(3)^a$
eta 1 p	13157	68.3(3)
$\beta 2p$	1729	9.0(2)
$\beta 3p$	13	0.07(2)

Only 3 cases of β 3p known:

- ⁴⁵Fe (Miernik et al., PRC76, 2007)
- ⁴³Cr (Pomorski et al., PRC83, 2011)
 - ³¹Ar (Lis et al., PRC, 2015)

All discovered with the OTPC!

Lis et al., PRC 91, 064309 (2015)

Seminarium AGH, 20 maja

Study of ⁶He @ REX ISOLDE/CERN

AG H

Decay scheme of ⁶He

Very small branching for the α +d decay of ⁶He results from the strong cancelation of the GT matrix elements from internal and external region.

The wave function has to be properly described up to 30 fm.

α+d energy spectrum

Detection threshold $\sim 400 \text{ keV}$

D. Anthony at al. Phys. Rev. C(65) (2002)034310 R. Raabe et al., Phys. Rev. C80 (2009) 054307 E_{α} = 140 keV E_{d} = 260 keV

⁶He decay studies at ISOLDE

• 2.9 MeV/u ⁶He beam from REX-ISOLDE

10⁴ ⁶He ions 150 ms bunch

beta particles recorded during 650 ms exposure after the ⁶He bunch.

M. Pfützner et al., Phys. Rev. C, 92 (2015) 014316

Probing the 2n halo of ⁶He

- Weak decay branch (≈10⁻⁶) ⁶He → α + d provides insight into the 2n halo of ⁶He
- Bunches of ⁶He ions were delivered by REX-ISOLDE and implanted into the OTPC
- Clear images of decay events with tracks of an α particle and a deuteron were recorded by a CCD camera

A CCD image showing a bunch of implanted ⁶He ions (red) and a ⁶He $\rightarrow \alpha$ + d decay (green)

M. Pfützner et al., Phys. Rev. C, 92 (2015) 014316

M. Pfützner et al., Phys. Rev. C, 92 (2015) 014316

Last experiment (September 2015) ²⁷S @ ACCULINNA

Fig. 3. Charged-particle spectrum of the decay of ²⁷S nuclei implanted in the E3 silicon detector. Proton groups above about 7 MeV have to be reconstructed by summing the energy signals from detectors E3 and E4.

EPJ A12 (2001) 377: $T_{1/2}(^{27}S) = 15.5 \text{ ms}$; $P(\beta p) = 2.3 \pm 0.9\%$; $P(\beta 2p) = 1.1 \pm 0.5\%$ Seminarium AGH, 20 maja 65

Seminarium AGH, 20 maja

Collaboration

University of Warsaw

- W. Dominik
- A. Korgul
- <u>A. Ciemny</u>
- L. Janiak
- C. Mazzochi
- K. Miernik
- <u>S. Mianowski</u>
- M. Pfutzner
- <u>M. Pomorski</u>

<u>JINR Dubna</u>

- A.Fomichev
- A.Bezbakh
- G.Kamiński
- S.Krupko

<u>AGH Krakow</u> • N. Sokołowska

<u>GS/</u>

- I. Mukha
- H. Geissel
- S. Weick

<u>NSCL</u>

- •T. Baumann
- •T. Ginter
- A. Stolz
- S. Liddick

Oak Ridge National Lab.

- K. Rykaczewski
- University of Tennessee
- R. Grzywacz
- S.Paulauskas

<u>CERN - ISOLDE</u>

- M. Kowalska
- M. Borge

OTPC: Summary

- OTPC was used in connection with different ion delivery systems
- Presented pictures and slides (OTPC part) by courtesy of Marek Printzner • OTPC is a perfect tool to study exotic decays :
 - single event sensitivity
 - low energy threshold
 - low background
 - studies of correlation possible
 - easy to set-up and to use
- Imitations
 - reconstruction of multi-particle decays (>2) difficult / impossible
 - low counting rate ~2 Hz
 - limited range of measured energies
- OTPC is a perfect instrumentation tool for ACCULINNA-2 Seminarium AGH, 20 maja

Possibilities for students at JINR

Letnie praktyki dla studentów w ZIBJ

Informacje o praktykach można znaleźć na stronie: poland.jinr.ru -> Program Bogolubowa-Infelda

Seminarium AGH, 20 maja

Letnie praktyki dla studentów w ZIBJ

Summer Student Practices in JINR Fields of Research w Zjednoczonym Instytucie Badań Jądrowych w Dubnej, 3 do 24 lipca 2016 roku (wyjazd z Polski 2 lub 3 lipca, wyjazd z Dubnej 24 lipca). Praktyki adresowane są do studentów 3 – 5 roku: - fizyki (specjalność: fizyka jądrowa, fizyka medyczna, nanotechnologia, fizyka ogólna, informatyka) - chemii, biologii i medycyny

Uczestnik praktyki pokrywa:

koszt przejazdu z Moskwy do miejsca zamieszkania w Polsce (około 500 PLN), koszt dwukrotnej wizy tranzytowej przez Białoruś (15 Euro – opłata za udzielenie wizy, plus opłata około 150 PLN za pośrednictwo w załatwieniu wizy). koszt ubezpieczenia KL i NNW na okres podróży i pobytu na praktyce (około 70 PLN)

Natomiast ZIBJ pokrywa pozostałe koszty:

zakwaterowania w pokojach 3 lub 4 osobowych w hotelu instytutowym, programu turystyczno-rekreacyjnego,

praktyki (szczegóły na stronie "Presentation of the projects by students")

transportu z Moskwy do Dubnej w dniu przyjazdu i z Dubnej do Moskwy w dniu powrotu do Polski, biletu na przejazd pociągiem w wagonie sypialnym II klasy z miejsca zamieszkania w Polsce do Moskwy (łącznie do 150 USD).

Ponadto uczestnik praktyki otrzyma dietę w wysokości 25 USD dziennie i bezpłatne śniadania w restauracji hotelowej.

Część naukowa praktyki składa się z 3 elementów:

Wysłuchanie 4 – 6 wykładów wygłoszonych przez znanych profesorów ZIBJ, przy czym wykaz wykładów zostanie podany w pierwszym dniu praktyki. Wykonanie wybranego projektu/ćwiczenia. Przygotowanie prezentacji na temat wykonanego ćwiczenia i przedstawienie jej w ostatni dzień

Praktyki indywidualne, staże, eksperymenty

Oprócz letnich praktyk, jest możliwość odbycia praktyk indywidualnych, staży w ramach realizacji prac magisterskich, doktorskich, udział w eksperymentach. Pełne lub częściowe finansowanie na wyjazd uzyskuje się z Program Bogolubowa-Infelda. Warunki ustala się indywidualnie, w zależności od celu wyjazdu i długosci pobytu: głównie są to wyjazdy od tygodnia do dwóch miesięcy

Wyjazdy na okres od 3 miesięcy i więcej

Informacje o formalnościach zwiazanych z wyjazdami na okres dluższy niż 3miesiące można znaleźć na stronie: http://poland.jinr.ru informacje dla przyjeżdżających Wyjazd organizowany jest na zasadzie zatrudnienia na czas określony, od 3 miesięcy do 2-3 lat z możliwością przedlużenia kontraktu

> Więcej informacji : Władysław Chmielowski, email: wchmiel@jinr.ru Kinga Horodek: kinga.bagazja@uj.edu.pl Grzegorz Kaminski, Grzegorz .Kaminski@ifj.edu.pl

Seminarium AGH, 20 maja

Możliwość organizacji stażu w grupie ACCULINNA

Prace związane z konstrukcją i testowaniem detektorów, prace związane z programowaniem systemu kontroli próżni na separatorze ACCULINNA-2

Controllers

