

Akademia Górniczo-Hutnicza Katedra Elektroniki

**Obserwatorium Astronomiczne UJ** Zakład Fizyki Wysokich Energii

Andrzej Kułak

# Fale elektromagnetyczne ELF na powierzchni Ziemi

Wydział Fizyki i Informatyki Stosowanej

17 kwietnia 2016

są to fale radiowe o częstotliwościach w zakresie 3 ÷ 3000 Hz (ELF)

**Ekstremalnie Niskie Częstotliwości – ENC (skrót nie stosowany)** 

**Extremely Low Frequency – ELF** 

częstotliwości ELF nie są stosowane w radiokomunikacji cywilnej

licencje są wydawane w zakresie 9 kHz ÷ 300 GHz

są używane w radiokomunikacji wojskowej

(76 Hz) i 82 Hz

# Treść

propagacja fal ELF

źródła fal ELF

techniki obserwacji fal ELF

przyszłość badań w zakresie ELF

pola ELF jako czynnik zakłócający pracę detektorów fal grawitacyjnych

uwaga: prezentacja skupia się na wynikach badań krakowskich

# Początek badań – seria niepowodzeń



1890 - Arthur Edwin Kennelly – inżynier amerykański (1861–1939)

próba obserwacji Słońca w zakresie fal ELF



1899 do 1914 - Nikola Tesla – inżynier serbskiego pochodzenia (1856 - 1943)

eksperymenty nad generacją i przekazem energii w zakresie ELF



1952 - Winfried Otto Schumann – fizyk niemiecki (1888 – 1974)

rozwiązania dla wyidealizowanej wnęki sferycznej Ziemia - Jonosfera

# 1886 – I eksperyment Hertza



500 Hz 300 km

jak eksperymentować w zakresie ELF ?

# 1887 - II eksperyment Hertza



1890 – A. E. Kennelly – próba radioastronomii w zakresie ELF

projekt w ramach Laboratorium Edisona







7 zwojowa antena ferrytowa

złoże rudy żelaza w New Jersey

odbiornik ELF - słuchawka telefoniczna

# W kierunku ELF - kolejne etapy skracania rezonansowych anten nadawczych



#### 1899 – N. Tesla – udany pokaz przekazu energii w Colorado Springs



ale to nie były fale ELF – to były pulsacje pola w strefie bliskiej (pole coulombowskie)

1901 – G. Marconi przeprowadza łączność radiową przez Atlantyk

eksperyment był stanowczo odradzany przez fizyków (nonsens + koszt)



Arthur Edwin Kennelly i Oliver Heaviside wysuwają hipotezę istnienia jonosfery

wyjaśnia to porażkę radioastronomii Słońca

http://www.antennex.com/prop/prop0707/prop0707.pdf

1952 - W. O. Schumann

rozwiązania równań pola w idealnej wnęce sferycznej G - J



dla Ziemi częstotliwości własne:

$$f_n = \frac{c}{2\pi a} \sqrt{n(n+1)}$$

 $f_1 = 10.6$  [Hz]  $f_2 = 18.4$  $f_3 = 26.0$  1960 – pierwsza obserwacja rezonansu Schumanna

pierwsze próby obserwacji rezonansu podjął sam Schumann w 1952, 1954 i 1957 r z powodu zbyt dużych zakłóceń w okolicach Monachium nie dały one wyników

M. Balser, C. A. Wagner MIT – pustynia meksykańska

$$f_{r1} \approx 8$$
 [Hz]  
 $f_{r2} \approx 14$   
 $f_{r3} \approx 20$ 



*Nature,* 188, 638, 1960

były one dalece rozbieżne z przewidywaniami Schumanna

 $f_1 = 10.6$  [Hz]  $f_2 = 18.4$  $f_3 = 26.0$ 

rozbieżność wyjaśniły późniejsze modele uwzględniające dyspersyjne tłumienie wnęki

1960 – pierwsza obserwacja MIT

1962 ÷ 1972 – podstawowe prace modelowe falowodu Ziemia - Jonosfera i wnęki Z-J

1987 – pierwszy globalny system łączności radiowej (76 Hz)

1991 - E. R. Williams MIT – amplituda 1 modu rezonansu Schumanna jako globalny wskaźnik temperatury 1991 - inni

> G. Satori A. P. Nickolaenko M. Hayakawa V. Bliokh C. Price

1993 – początek badań krakowskich

#### Badania wnęki Ziemia – Jonosfera

rozwiązania równań pola w idealnej sferycznej wnęce idealnej

W. O. Schumann, 1952, P. V. Bliokh, 1977, J. D. Jackson, 1982 (wydanie polskie monografii)

modelowanie wnęki uwzględniające niejednorodny profil przewodnośc jonosfery

| modele analityczne              | modele numeryczne FTDT             |
|---------------------------------|------------------------------------|
| D. L. Jones, 1964               | J. Galejs, 1972                    |
| J. R. Wait, 1965                | J. J. Simpson and A. Taflove, 2002 |
| J. Galejs, 1972                 | GRS, 2003                          |
| C. Greifinger and P. Greifinger | T. Ostuyama et al., 2004           |
| D. D. Sentman, 1989, 1996       | S. A. Cummer, 2004                 |
| V. Mushtak, E. Williams, 2002   | H. Yang and V. Pasko, 2006         |
| GRS, 2007, 2014                 | GRS, 2015                          |
|                                 |                                    |

rozwiązania odwrotne, odtwarzanie rozmieszczenia źródeł we wnęce

S. J. Heckman, E. Williams, B. Boldi, 1998
A. V. Shvets, 2001
Y. Ando, M. Hayakawa, 2005
GRS, 2003, 2006, 2009, 2015

#### Badania propagacji impulsów pola ELF w falowodach Grunt – Jonosfera

badania rozpoczęły się w latach 60 - tych

T. Ogawa, 1965 – pojęcie odosobnionego impulsu, Q burstu

D. D. Sentman, 1993

**M.** Rycroft, 1994

W. A. Lyons, 1994

D. Boccippio, 1995

**GRS**, 1996

S. A. Cummer, 1999 – rozwiązania odwrotne do wyznaczania mometów dipolowych

D. Boccippio, E. R. Williams , 1995 – pierwsze analizy sygnałów SPRITE

W. A. Lyons, 1999

**GRS 2007** 

S. A. Cummer, 1999 – rozwiązania odwrotne do wyznaczania mometów dipolowych Hayakawa, Nickolaenko, 2000 – 2015 – impulsy generowane przez trzęsienia Ziemi GRS, 2010, 2011, 2014 – rozwiązania odwrotne, analiza źródeł GRS 2012, 2013, 2014 – modelowanie falowodów grunt – jonosfera, inne planety zakres fal ELF jest propagacyjnie wyróżniony na planetach posiadających atmosfery

ich górne warstwy są zazwyczaj wystarczająco zjonizowane by odbijać fale ELF

w połączeniu z gruntem tworzą falowody Grunt – Jonosfera (G-J)

tłumienie fal ELF w falowodach G - J jest <u>bardzo małe</u>

nie konkuruje pod tym względem żaden inny zakres częstotliwości fal EM

#### Główne ośrodki zajmujące się badaniami fal ELF

| od 1960 - MIT - Lincolm Laboratory | E. Williams | Rhode Island |
|------------------------------------|-------------|--------------|
| od 1990 - Hungary                  | G. Satori   | Nagycenk     |
| od 1993 - Polska                   | GRS         | Hylaty       |
| od 1997 - Israel                   | C. Price    | Mitzpe Ramon |
| od 1999 - Japan                    | M. Hayakawa | Moshiri      |

głównym utrudnieniem obserwacji są zakłócenia cywilizacyjne

w Europie jest niewiele miejsc czystych elektromagnetycznie

w Polsce rygorystyczny wymóg czystości spełniają wybrane miejsca w Bieszczadach

Grupa Rezonansu Schumanna – UJ / AGH



Kraków ELF Research Team

własna aparatura obserwacyjna, własna metodologia badań

# Anteny fal ELF





antena elektryczna pręt pionowy wysokość 1.5 m

antena magnetyczna

wielozwojowa cewka na rdzeniu magnetycznym

długość 0.6 do 1.5 m

Charakterystyki kierunkowe anten magnetycznych – wyznaczanie azymutu źródła



# Odbiorniki ELF

2004

1993



odbiornik ELA1 1 kanał 0.03 – 60 Hz próbkowanie 175 1/s dynamika 14 bit 12 V / 80 mW RS232 notebook HDD błąd czasu < 60 s odbiornik ELA7 4 kanały 0.03 – 60 Hz próbkowanie 175 1/s dynamika 16 bit 12 V / 600 mW card CF 4 GB błąd czasu < 500 μs 2012



<u>odbiornik ELA10</u> 4 kanały 0.03 – 300 Hz próbkowanie 900 1/s dynamika 16 bit 12 V / 800 mW card CF 16 GB błąd czasu < 200 μs

# Odbiorniki ELA stosowane w badaniach krakowskich

|                 | ELA1                      | ELA2                     | ELA6                      | ELA7                      | ELA9                      | ELA10                     |
|-----------------|---------------------------|--------------------------|---------------------------|---------------------------|---------------------------|---------------------------|
| year            | 1993                      | 1997                     | 2004                      | 2006                      | 2009                      | 2012                      |
| number of units | 1                         | 2                        | 1                         | 2                         | 2                         | 3                         |
| destiny         | expeditions               | expeditions              | continuous                | continuous                | continuous                | continuous                |
| chanels         | 1+3                       | 4 lub 8                  | 4                         | 4                         | 2                         | 4                         |
| antennas        | AB1000                    | AB600                    | AA1000                    | AA1000                    | AA1130                    | AAS1130                   |
| noise limit     | 0,07 pT/Hz <sup>1/2</sup> | 0,2 pT/Hz <sup>1/2</sup> | 0,02 pT/Hz <sup>1/2</sup> | 0,02 pT/Hz <sup>1/2</sup> | 0,02 pT/Hz <sup>1/2</sup> | 0,02 pT/Hz <sup>1/2</sup> |
| ADC             | 12 bit                    | 12 bit                   | 16 bit                    | 16 bit                    | 16 bit                    | 16 bit                    |
| max frequency   | 60 Hz                     | 20/40/60 Hz              | 60 Hz                     | 60 Hz                     | 60 Hz                     | 300 Hz                    |
| sampling        | 180/240 Hz                | 50/100/180 Hz            | 175 Hz                    | 175 Hz                    | 175 Hz                    | 900 Hz                    |
| processor       | I8051                     | I8052                    | Atmega128                 | Atmega128                 | Atmega128                 | Atmega256                 |
| GPS time        | -                         | -                        | -                         | +                         | +                         | +                         |
| time error      | minutes                   | 30 s/ month              | 30 s/ month               | 500 µs                    | 500 µs                    | 200 μs                    |
| modem GSM       | -                         | -                        | -                         | external                  | external                  | external                  |
| data storage    | notebook                  | notebook                 | card CF                   | card CF                   | card CF                   | card CF                   |
|                 | HDD                       | HDD                      | 1GB                       | 4GB                       | 4GB                       | 16GB                      |
| data            | RS232                     | RS232                    | RS232                     | RS232                     | RS485                     | RS485                     |
| transmission    |                           |                          |                           | RS485                     | USB                       | USB                       |
| battery         | 6 x R20                   | 12 V/12 Ah               | 12V/260 Ah                | 12V/260 Ah                | 12 V/12 Ah                | 12V/260 Ah                |
| power           | 80 mW                     | 1400 mW                  | 600 mW                    | 600 mW                    | 600 mW                    | 800 mW                    |







2014 – Radio Science

# Obserwatorium fal ELF Hylaty w Bieszczadach



podziemne pomieszczenie stacji

# Wejście do podziemi stacji

# Podziemne pole antenowe



# Podziemne pomieszczenie aparaturowe stacji / anteny magnetyczne ELF









#### 300 sekundowy plik standardowy



plik standardowy – 300 s - 52 500 16 bitowych próbek pola

pliki są tworzone "na styk"

w takich przebiegach zawarte są informacje o wielu procesach planetarnych obserwacja poszczególnych typów zjawisk wymaga <u>specyficznych metod analizy</u> od listopada 2009 samplowanie z dokładnością czasu GPS

#### Baza danych obserwacyjnych

od 1994 wysokiej jakości materiał obserwacyjny w paśmie 0.03 – 60 Hz

wysokiej jakości filtry antyaliasingowe > 35 dB na  $f_s/2$ niski poziom szumu anten magnetycznych optymalna lokalizacja stacji obserwacyjnej plik standardowy – 300 s

1994 – 2005 obserwacje sporadyczne – 50 ekspedycji kilkudniowych – 10 tys. plików

od 2005 – obserwacja ciągła – pasmo <u>30 mHz do 60 Hz</u> - 2 współrzędne magnetyczne

60 MB / doba 22 GB / rok

od 2008 – precyzyjny timing próbek – 500 μs

od 2013 – równolegle obserwacja ciągła – <u>pasmo 30 mHz do 300 Hz</u> - 2 współrzędne magnetyczne 300 MB / doba 110 GB / rok

od 2015 – dodatkowo stacja obserwacyjna HUGO

#### Teoria - falowód Grunt-Jonosfera

wysokość falowodów planetarnych w zakresie ELF jest zawarta w granicach 50 – 100 km jest ona w szerokim zakresie częstotliwości jest mniejsza od połowy długości fali



równania Maxwella – zmienne E i H

równanie falowe Kleine-Gordona

# Fizyczna budowa falowodu G-J

słabo zjonizowana plazma o rosnącej przewodności



wysokości dzienne różnią się od nocnych — w pierwszym przybliżeniu model "uniform"

# Fala EM w falowodzie G-J

#### wysokość "elektryczna"



#### wysokość "magnetyczna"



granica wnikania pola H wysokość na którą pole magnetyczne fali zdąży wdyfundować w czasie 1 okresu

granica wnikania pola E prąd przewodzenia zrównuje się z prądem przesunięcia

 $h_e \approx 55 \text{ km}$  f = 10 Hz

 $h_m \approx 95 \text{ km}$ 

# Reprezentacja fizyczna falowodu G-J



 $\left. \frac{\overline{h_e}}{\overline{h_m}} \right\} \text{ zespolone wysokości charakterystyczne E i H}$ 

prędkość fazowa

$$\frac{c}{v_{ph}} = \operatorname{Re} \sqrt{\frac{\overline{h_m}}{\overline{h_e}}}$$

współczynnik tłumienia 🧠

$$\alpha = \frac{\omega}{c} \operatorname{Im} \sqrt{\frac{\overline{h_m}}{\overline{h_e}}}$$



$$\overline{L} = \frac{\mu \cdot \overline{h_m}}{W}$$
$$\overline{C} = \frac{\varepsilon_0 W}{\overline{h_e}}$$

parametry jednostkowe linii

## Ogólny model falowodu G - J



daje analityczne rozwiązania dla wysokości  $h_e$  i  $h_m$  dla dowolnego duktu w ośrodku niejednorodnym

$$\delta_{\rm m} = \sqrt{\frac{2}{\mu_0 \sigma \, \omega}}$$

$$\delta_{\rm e} = \sqrt{\frac{2\varepsilon_0^2 \omega}{\mu_0 \sigma^3}}$$
(efekt Casimira)
$$d_{\rm m} = \frac{1}{2\varepsilon_0^2 \omega}$$

2013, 2014, 2015 - IEEE

#### Rozwiązania odwrotne – odtwarzanie parametrów źródeł



przygotowywane są algorytmy do tomografii Marsa

2010 - JGR, 2011 – Radio Science

#### Typowe parametry propagacyjne falowodu G – J na Ziemi



propagacja fal jest jednomodowa TEM w zakresie: 8 - 1500 [Hz] (linia paskowa) prędkość fazowa fal silnie zależy od częstotliwości: v = 0.83 c dla 10 Hz tłumienie fal silnie zależne od częstotliwości: na 10 Hz <u>spadek energii do połowy na</u> 10 000 [km] niezwykła stałość parametrów propagacyjnych

> w cyklu 11 letnim zmiana prędkości fazowej jest rzędu 3 % w cyklu 11 letnim zmiana współczynnika tłumienia jest rzędu 15 % z dnia na dzień zmiany współczynnika tłumienia nie większe niż 0.2 %

# Promieniowanie pionowego dipola elektrycznego w falowodzie G-J





strefa bliska kończy się w odleglości *h* od źródła (w odległości ok. 100 km)

#### podstawowe źródło - wyładowania elektryczne w atmosferze

fale przenikają również z przestrzeni wokółziemskiej – magnetosfery (słaba konwersja) wzbudzają je również trzęsienia ziemi

wyładowania atmosferyczne w kolejności częstości występowania:

| CC - chmura – chmura                       | skala energii | 0.1    |
|--------------------------------------------|---------------|--------|
| CG <sup>-</sup> - ujemne chmura – grunt    |               | 1      |
| CI - wewnątrzchmurowe                      |               | 10     |
| CG <sup>+</sup> - dodatnie chmura – grunt  |               | 1000   |
| IC – wyładowanie jonosfera – chmura typu S | PRITE         | 10 000 |
| IC typu Gigantic Jet (GJ)                  |               |        |

#### Wyładowania ujemne chmura – grunt (CG<sup>-</sup>)



wewnątrz komórek burzowych zachodzi separacja ładunków - mechanizm prądnicy na dole gromadzą się ładunki ujemne prowadzące do dużej różnicy *V* dochodzi do przebicia powietrza i gwałtownego rozładowania chmury w typowej chmurze burzowej wyładowanie jest możliwe co kilka sekund na Ziemi stale działa ok. 1500 burz – <u>zachodzi ok. 50 wyładowań CG<sup>-</sup> / sekundę</u>
# Wyładowanie ujemne CG<sup>-</sup> jako źródło



- q = 2.5 [C] typowy ładunek
- l = 2.5 [km] długość kanału wyładowania
- W = 20 [MJ] zgromadzona energia elektrostatyczna
- $\tau = 75 \ [\mu s]$  czas rozładowania (wyładowanie udarowe)
- $I_{\text{max}} = 20\,000$  [A] typowy prąd maksymalny (antenowy)
- $P_{em} \approx 100 \text{ [W]}$  chwilowa moc promieniowana w zakresie ELF (widmo płaskie)

### I globalna konsekwencja wyładowań ujemnych – naładowana jonosfera Ziemi





potencjał jonosfery – 300 000 V

pojemność jonosfery – 1.8 F

zgromadzony ładunek – 540 000 C

oporność upływu - 220  $\Omega$ 

prąd upływu – 1360 A

moc cieplna upływu wydzielana w atmosferze - 400 MW

1927 - C. T. R. Wilson – Nagroda Nobla

I globalna konsekwencja - cd



mieszkamy wewnątrz naładowanego kondensatora sferycznego

istnieje stałe pole elektryczne na powierzchni gruntu

## Dzięki naładowanej jonosferze możliwe są burze



#### mechanizm separacji ładunku w chmurze burzowej zachodzi dzięki istnieniu pola E

MacGormanand Rust, 1998

#### Wyładowania dodatnie chmura-grunt (CG+)



wielka komórka burzowa - mezoskalowy system konwekcyjny - MCS wyładowania dodatnie CG<sup>+</sup> powstają w wydłużonej części chmury są rzadkie – na Ziemi 1 wyładowanie co kilkanaście sekund

# Czym się różnią wyładowania dodatnie od ujemnych ?





wyładowanie dodatnie chmura - grunt

prądy sięgające 200 000 A energie rzędu 100 milionów J

wyładowanie ujemne chmura – grunt

typowy prąd - ok. 20 000 A

energie rzędu 10 milionów J

### Fale ELF wytwarzane przez wyładowania dodatnie CG+



#### typowe

#### bardzo silne (Q-bursty)

| <i>q</i> =15 [C]              | ładunek                    |
|-------------------------------|----------------------------|
| <i>l</i> =12 [km]             | długość kanału wyładowania |
| p = 225 [C km]                | moment dipolowy ładunków   |
| W=100 [MJ]                    | zgromadzona energia        |
| $\tau = 200  [\mu s]$         | czas rozładowania          |
| $I_{\rm max} = 100\ 000\ [A]$ | prąd maksymalny widocz     |

q = 100 [C] l = 12 [km] p = 1200 [C km]W = 1400 [MJ]

widoczny wielokrotny obieg impulsu wokół Ziemi

### Powstawanie impulsu wielokrotnego (Q-burstu)



T – czas obiegu impulsu wokół Ziemi  $\tau$  – czas przelotu impulsu po trasie krótkiej



# Wyładowania Jonosfera – Chmura (IC)



wyładowanie CG+ usuwa ładunek dodatni z górnej części chmury

ładunek ujemny przesuwa się do góry

dochodzi do przyspieszania elektronów w kierunku jonosfery

wytwarza się prekursor i przebicie lawinowe (RS)

dochodzi do przepływu prądu z jonosfery do chmury (IC)

potencjał jonosfery w wyniku wyładowania opada o 10 V

Efekty optyczne związane z wyładowaniami Jonosfera – Chmura

optycznie widoczne jako TLE

(Transient Luminous Event)

orbitalnie: ISUAL, EUSO



#### SPRITE

czas trwania świecenia : ok. 100 ms jasność całkowita: 1 - 10 MR (mega Rayleigh) czas wyładowania: ok. 200 ms



#### GJ (Gigantic Jet)

czas trwania świecenia : ok. 20 ms jasność całkowita: ok. 3 MR czas wyładowania: ok. 100 ms Impulsy ELF generowane przez SPRITE



CG<sup>+</sup> – wyładowanie CG<sup>+</sup> do gruntu

ULF – fala podłużna, prawdopodobnie wzbudzana lokalnie w rezonatorze IAR

### Przykład – studium serii sprajtów zakończonej trolem

duża komórka MCS nad Niemcami - noc sprajtów 6 sierpnia 2013 (ogółem 100) prowadzono jednoczesne obserwacje przy pomocy 2 kamer, stacji Hylaty i stacji LINET-u









#### Inny przykład – pierwszy europejski wielki dżet (GJ) w pobliżu Korsyki – 12 grudnia 2009



obserwator optyczny: Ferrucio Zanotti z Montignoso zrzeszony w sieci Italian and TLE Network rozciągnięty obszar burzowy 80 km na zachód od Ajaccio na Korsyce (1400 km od Hylatego)

#### Odtworzenie parametrów europejskiego GJ



odległość od Hylatego  $r \approx 1400 \, [\text{km}]$ moment dipolowy  $p \approx 1.2 \cdot 10^4 \, [\text{C km}]$ 

długość kanału wyładowania wynikająca z pomiarów optycznych  $l \approx 60$  [km] wynikający stąd przeniesiony ładunek  $q = p / l \approx 200$  [C] energia rozładowania układu ładunków  $W \approx 6$  [GJ]

równoważnik 1 kt TNT  $\longleftrightarrow$   $W \approx 1.5 [kt TNT]$ 

2011 – Radio Science

#### Inny przykład – Madagaskar



Madagaskar – 7 marca 2010 – 6 GJ w ciągu kilku minut

GJ2 - moment wystąpienia maksimum 17:42:50.042

czas moment kamery 17:42:50.000

moment dipolowy szybkiej fazy wyładowania RS: p = 700 C km

# Badania wyładowań emitujących ziemskie błyski gamma (TGF)

#### **1992 - satelita BATSE Compton Gamma Ray Observatory**

[Fishman et al., 1994]



typowy czas trwania 1 ms



#### fotony powyżej 1 MeV, widoczne ponad chmurami (ponad 40 km)

#### podejrzenie: wyładowania IC, SPRITE ?



rozmieszczenie - satelita RHESSI - 1.03.2002 do 15.09.2005 - 561 TGF

dla nas bezpośrednim impulsem była praca *M. S. Briggsa* w JGR, 2010, "First results on TGF from Fermi Gamma-ray Monitor"

#### Przykład wyładowania wewnątrzchmurowgoe związanego z TGF 081113



3 z 8 TGF, położone w odległości mniejszej niż 6000 km 2012 - JGR

### II globalna konsekwencja występowania wyładowań ujemnych – rezonans Schumanna

w czasie lokalnym ok. 14 LT – działają na Ziemi wielkie tropikalne centra burzowe

globalna częstość wyładowań  $<\lambda >= 50 [1/s]$ średnia moc wyładowań < P >=1 [GW]współczynnik konwersji energii na ELF  $\alpha = 10^{-6}$ średnia energia pola ELF we wnęce <W>=1000 [J]czas zaniku energii pola we wnęce 1 [s]średnia moc pompowania rezonansu Schumanna < P >= 1000 [W]moc odbierana przez antenę ELF  $10^{-20} [W]$ 



amplituda pierwszego modu rezonansu 8 Hz ok.  $B \approx 1 \left[ \frac{\text{pT}}{\sqrt{\text{Hz}}} \right]$ 

# Rezonans Schumanna – BSR – Background Schumann Resonance



kolorowy proces gaussowski o czasie koherencji 1 s

#### Falowód czy wnęka ? – ciekawy obiekt do badań

rezonans pola EM w sferycznej stratnej wnęce o niejednorodnych ścianach okazał się niezwykle ciekawy



są rozwiązania analityczne

podejście falowodowe fale biegnące - propagacja fale tłumione

propagacja

są rozwiązania metoda funkcji Greena równanie niejednorodne fale biegnące + pole rez superpozycja



są rozwiązania analityczne metoda faktoryzacji (równanie Helmholtza) równanie jednorodne fale stojące - pole rezonansowe węzły i strzałki rezonatory akademickie w 2000 r dysponowaliśmy już dużym materiałem obserwacyjnym (Elżbieta 1 od 1994)



typowe codzienne wahania częstotliwości 1 modu sięgają 0.4 Hz (5%)

to nie możliwe by w takim stopniu zmieniały się parametry wnęki

linie rezonansowe są często asymetryczne

co się dzieje ?

# Pełny model propagacji fal we wnęce sferycznej Ziemia - Jonosfera



#### krzywe rezonansowe pola blisko źródła są wyraźnie <u>asymetryczne</u>

częstotliwości maksimów rezonansowych zależą od odległości obserwator - źródło



model TDTE SG1312 2D

(obecnie model FDTD Maxwell 3D)

dla podstawowego modu magnetycznego występuje efekt "<u>poniebieszczenia</u>" (sięga 5 %) (im dalej znajduje się źródło tym wyższą częstotliwość rezonansu obserwujemy) 2003a - JGR

#### Wyjaśnienia się zagadka dobowych zmian częstotliwości rezonansu Schumanna



#### model poprawnie opisał dobowe zmiany częstotliwości 1 modu sięgające 0.5 Hz

wynikają one ze zmian odległości pomiędzy obserwatorem a źródłem (efekt O-S)

2003b - JGR

# Jaka jest "prawdziwa" częstotliwość rezonansowa wnęki ?



przyjęliśmy  $f_{1rez} = f_1(90)$  met

metoda wskaźników odległości

"prawdziwe" częstotliwości rezonansowe wnęki okazały się bardzo stałe ! w 23 cyklu aktywności zmiany od minimum do maksimum były rzędu 0.2 Hz częstotliwość rezonansowa wnęki dla spokojnego Słońca  $f_{1rez} \approx 7.83$  [Hz]

2003b - JGR

Fizyczne przyczyny efektu obserwator-źródło i asymetrii krzywych rezonansowych



pole rezonansowe tworzy interferencja fal o jednakowych amplitudach  $\leftarrow$  =  $\leftarrow$  +  $\rightarrow$ 

pozostała nadwyżka pola deformuje pole rezonansowe

ta nadwyżka to <u>fale biegnące</u> – prowadzi do asymetrycznego rezonansu Fano

potwierdza to metoda dekompozycji widma rezonansu Schumanna

metoda odtwarza pole rezonansowe wnęki

#### **Rezonans Fano**





(July 28, 1912 - February 13, 2001)

#### asymetryczny rezonans przeanalizował w 1961 r Ugo Fano (fizyk włosko – amerykański)

#### opisał model nieelastycznego rezonansowego rozpraszania elektronów na He

przyczyną asymetrii okazało się oddziaływanie pola rezonansowego z falami padających elektronów

# wyraził myśl – <u>oddziaływanie pomiędzy procesem rezonansowym i falami tła</u> daje zawsze asymetrię

efekt jest silny gdy:

pole rezonansowe jest silnie tłumione (proces nielastyczny, silnie dyssypatywny)

### Anatomia rezonansu Fano w tłumionym rezonatorze sferycznym



2016 - J. Appl. Phys.

#### Metoda dekompozycji widma

rozwiązania równania niejednorodnego / sygnał rezonansu Schumanna z wyjścia odbiornika



rozwiania odwrotne – badanie intensywności i rozmieszczenia źródeł

2006 – JGR, 2009 - EP 2165223

# 1 - test skuteczności metody dekompozycji na rozwiązaniach modelowych

#### dekompozycja ujawnia "prawdziwe" częstotliwości rezonansowe wnęki



2006 - JGR

### 2 – test metody na obserwowanych widmach rezonansu Schumanna



2006 - JGR

#### 3 – wskaźnik intensywności burz na Ziemi

składowa rezonansowa pola we wnęce Z-J jest globalna – wszyscy obserwatorzy widzą to samo

amplitudy modów rezonansowych odzwierciedlają intensywność wszystkich burz na Ziemi

dzięki metodzie dekompozycji można wyznaczać amplitudy modów

i na tej podstawie obliczyć <u>wskaźnik intensywności burz</u> *I<sub>RS</sub>* (mocy burz)



wskaźnik intensywności burz  $I_{RS}$  powinien zmieniać się tak samo jak stałe pole jonosfery  $E_{0z}$ 

# 4 - I i II konsekwencja wyładowań ujemnych są ze sobą ściśle powiązane !



2009 – Atmospheric Research

# 5 – badania aktywności wybranych centrów burzowych



### 6 – badania wpływu X słonecznych na warstwę D – SID ELF





6 sierpnia 2011

X2.1 – 6 class flare

#### strumień promieniowania X rzędu 10<sup>-4</sup> W/m<sup>2</sup>





# 2009 – test międzykontynentalnego przęsła Hylaty – Kanada (HC)



test możliwości radiolokacji i pomiaru źródeł metodą wyznaczania kierunków i czasów opóźnień (RDF i TOA)


# Lokalizacja X24

ALG

HYL



| 04:00:18.021 | ALG 13 100 km | ∆ <i>r</i> = 3800 km                  | HYL 9300 km | 310 <del>]</del> - |
|--------------|---------------|---------------------------------------|-------------|--------------------|
|              | b = 6050      | ∆ <i>r</i> = 3270 km - czasowa        | b = 8915    | 04:00:18.0         |
|              | b = 365 pT    | $v_n = 2.73 \cdot 10^8  \text{[m/s]}$ | b = 535 pT  |                    |

# X24





# Lokalizacja X30S



 ALG 3455 km
  $\Delta r = 4475 \text{ km}$  HYL 8380 km

 b = 4860
 b = 550

# Forma falowa X30S



widok ze stacji ALG – odległość 3450 km

## 2013 / 2014 - system HWK (Hylaty-Wigry-Karkonosze)



system HWK działał od 27 lipca do 12 sierpnia 2013 r

system HB (Hylaty – Brody) działał w sierpniu 2014 r

## HWK - przykład obserwacji SPRITE



S02K 03.08.2013 23:25:14.110

S02H 03.08.2013 23:25:14.109

# HWK – automatyczne śledzenie pozycji i wyznaczanie parametrów wyładowań



metoda wyznaczania kierunków i czasów opóźnień (RDF i TOA)

2016 – JGR

# Globalny system radiolokacji WERA - World ELF Radiolocation Array

3 stacje ELF mierzące składowe  $H_x H_y$ ,  $E_z$  rozmieszczone na 3 kontynentach wyznaczanie położenie źródeł metodą TOA + RDF



# WERA - współpraca

Earle Williams - Massachusetts Institute of Technology - Massachusetts



Fernanda T. Sao Sabbas - Instituto Nacional de Pesquisas - Aeronomy Division, Brazil



Mark Golkowski - Electrical Engineering University of Colorado Denver - Denver



NCN - 2012/04/M/ST10/00565 - Harmonia

# 20 maja 2015 – uruchomienie stacji w rezerwacie Hugo (Colorado)

AGH + OA UJ:



dr Janusz Młynarczyk



**Electrical Engineering University of Colorado:** 



#### dr Marek Gołkowski



6 studentów Wydziału Elektrycznego Uniwersytetu Colorado

# Stacja Hugo



# 2015–05–20 – Hugo – pierwszy test



27 marca 2016 – uruchomienie stacji w Patagonii (Argentyna)

AGH + OA UJ:



dr Janusz Młynarczyk



**UNIDAD DE INVESTIGACION Y DESARROLLO ESTRATEGICO PARA LA DEFENSA – Buenos Aires** 

director dr Eduardo J. Quel

stacja geofizyczna UNIDEF w bazie wojskowej w Río Gallegos



Jacobo Salvador



fizyk z lokalnej szkoły średniej

# Stacja Patagonia



2016–03–28 – Patagonia – pierwszy test



### Co daje system WERA ?

rozwiązania odwrotne w falowodach Grunt – Jonosfera / pojedyncze wyładowania pierwszy kompletny przegląd globalny silnych CG<sup>+</sup> i dojonosferycznych pomiar momentów prądowych odosobnionych wyładowań o *p* > 100 C km błąd pozycji wyładowań: 50 km x 50 km (10 km x 10 km w przyszłości) badania parametrów jonosfery na trasie propagacji

rozwiązania odwrotne we wnęce Grunt – Jonosfera / rezonans Schumanna mapowanie i kalibracja mocy burz w jednostkach bezwzględnych pozycja centrów: lepiej niż 300 km, czasowa zdolność rozdzielcza: 5 min pomiar mocy burz na Ziemi (w czasie rzeczywistym) badania dolnych warstw jonosfery badania wpływu aktywności Słońca na wnękę badania pogody i klimatu

# WERA – silne wyładowanie CG<sup>+</sup>

Hylaty

Hugo





8420 km

4390 km

metoda RDF + TOA



# WERA inne silne wyładowanie CG<sup>+</sup>

300 6/13/2016 9.25 200 100 5 3 7 0 لم ھ –100 -200 -300 -400 Data SIO, NOAA, U.S. Navy, NGA .....Google -500 └─ 65.9 Eye alt 10401.61 km 🔘 Date: 12/14/2015 45"44'03 53" N 66 66.1 66.5 66.6 66.7 66.2 66.3 66.4 time after 09:25UT [s]

#### 9 June 2015

#### metoda RDF + TOA

 $\alpha_{\rm HYL} = 58.4^{\circ}$   $\alpha_{\rm HUG} = 281.9^{\circ}$ 

# WERA - kolejny przykład CG<sup>+</sup>



9 June 2015

Afryka

# WERA – i jeszcze kolejny przykład silnego CG<sup>+</sup>



9 June 2015

#### Południowa Ameryka

metoda RDF + TOA

#### eoczekiwane odkrycie – rezonans Schumanna w sygnałach detektorów grawitacyjnych LIGO i Vir

interferometry LIGO Hanford (LHO) i LIGO Livingston



Magnetic cross-amplitude spectra during the S5 and S6-VSR2/3 LIGO-Virgo science runs.



Strain amplitude spectra for correlated and uncorrelated noise. Black is the uncorrelated noise for the H1L1 detector pair operating at Advanced LIGO design sensitivity and assuming 1 yr of integration.

# Metody detekcji fal grawitacyjnych



### aLIGO



# aLIGO – dolny limit sygnału



ograniczenia szumowe:

powyżej 150 Hz - szum kwantowy

poniżej 150 Hz – inne źródła szumu

szum fazowy lasera

szum termiczny zawieszeń

ponadto sygnały kalibracyjne:

33-38, 330 i 1080 Hz

w widmie sygnału detektora widać również:

drgania zawieszenia włókna - 500 Hz i harmoniczne

sieć 60 Hz i harmoniczne

Dlaczego tak się dzieje – możliwe mechanizmy oddziaływania pola EM

silny wpływ – głównie składowa magnetyczna pola H – trudna do ekranowania

powstawanie sił w elementach zawieszeń i masach próbnych

hierarchia intensywności oddziaływań :

przewody z prądem – siły elektrodynamiczne ferromagnetyk namagnesowany – momenty skręcające ferromagnetyk miękki – wciąganie ferromagnetyk miękki – magnetostrykcja przewodnik – siły Lenza niedoskonały dielektryk – siły Lenza, elektrostrykcja doskonały dielektryk – elektrostrykcja

10<sup>36</sup>

720 dB

# Oddziaływanie pól EM na zawieszenia mas próbnych



w LIGO stosowano magnesy zamontowane bezpośrednio na masach testowych w aLIGO pole wpływa na ferromagnetyki w 1 i 2 systemie zawieszeń

impuls pola ELF o amplitudzie B = 10 pT wywołuje impuls pseudograwitacyjny o amplitudzie h = 10<sup>-22</sup>

## Jak przeciwdziałać?

ekranowanie wrażliwych układów zawieszeń mas próbnych

ekranowanie bierne – osłony ferromagnetyczne wrażliwych elementów zawieszeń

ekranowanie aktywne – możliwe układy o wielu czujnikach magnetycznych

zastosowanie lokalnych magnetometrów i usuwanie postdetekcyjne na wyjściu detektora

odosobnione impulsy ELF

weryfikacja korelacyjna

pole BSR – Background Schumann Resonance

odejmowanie niekoherentne

optymalne filtry wienerowskie w czasie rzeczywistym

odejmowanie widmowe

odejmowanie koherentne (z uwzględnieniem fazy)

### Transient gravitational wave signal - September 14, 2015 at 09:50:45 UTC



B. P. Abbot et al., Phys . Rev. Lett., 12 February 2016

# Położenie stacji Hugo względem detektorów LIGO

Hanford, Washington



Livingston, Louisiana

# Weryfikacja wpływu impulsów EM na zapis LIGO



#### Podsumowanie

badania fal elektromagnetycznych ELF są szybko rozwijającym się działem geofizyki dostarczają informacji o fizyce wyładowań w atmosferze Ziemi pozwalają badać dolne warstwy jonosfery i wpływ Słońca na ich stan umożliwiają precyzyjną metrologię globalnego obwodu elektrycznego mapowanie burz w skali globalnej pomiary aktywności w jednostkach bezwzględnych

wkrótce staną się nową metodą badań jonosfer i gruntu planet

jest jeszcze wiele problemów do rozwiązania

zagadnienia typowe dla fizyki i informatyki stosowanej

### Dziękujemy za zaproszenie



### Ważniejsze publikacje GRS cytowane w wykładzie

- A. Kułak, K. Maślanka, A. Michalec, S. Zięba, Observations of Alfven Ionospheric Resonances on the Earth Surface, *Studia Geophysica et Geodaetica*, 43, 399 406, 1999.
- A. Kułak, S. Micek, Z. Nieckarz, S. Zięba, Solar variations in extremely low frequency propagation parameters: I. A two-dimensional telegraph equation (TDTE) model of ELF propagation and fundamental parameters of Schumann resonances, J. Geophys. Res., 108, A7, 1270, doi: 10.1029/2002 JA009304, 2003
- A. Kułak, J. Kubisz, A. Michalec, Z. Nieckarz, S. Zięba, Solar variations in extremely low frequency propagation parameters: II. Observations of Schumann resonances and computation of the ELF attenuation parameter, *J. Geophys. Res*, 108, A7, 1271, doi: 10.1029/2002JA009305, 2003
- A. Kułak, J. Młynarczyk, S. Zieba, S. Micek, Z. Nieckarz, Studies of ELF propagation in the spherical shell cavity using a field decomposition method based on asymmetry of Schumann resonance curves, J. Geophys. Res, Vol. 111, A10304, doi:10.1029/2005JA01149,2006.
- A. Odzimek, Kułak A., Michalec A., Kubisz J., An automatic method to determine the frequency scale of the ionospheric Alfven resonator using data from Hylaty station, Poland, Annales Geophysicae, 2151-2158, 2006.
- M. J. Rycroft, A. Odzimek, N. F. Arnold, M. Fullekrug, A. Kulak, T. Neubert, New model simulations of the global atmospheric electric circuit driven by thunderstorms and electrified shower clouds: The roles of lightning and sprites, *J. Atmos. Sol. Terr. Phys.*, 69 (17-18), 2485-2509, 2007.
- Z. Nieckarz, Andrzej Kułak, Stanisław Zięba, Marek Kubicki, Stanisław Michnowski, Piotr Barański, Comparison of global storm activity calculated from Schumann resonance bckground component to electric field intensity E0Z, *Atmospheric Research*, Vol. 91, pp. 184-187, 2009.
- Z. Nieckarz, S. Zieba, A. Kułak and A. Michalec, Study of the Periodicities of Lightning Activity in Three Main Thunderstorm Centers Based on Schumann Resonance Measurements, *Monthly Weather Review*, Volume 137, Issue 12, pp. 4401–4409, DOI: 10.1175/2009MWR2920.1, 2009.
- A. Kulak, Z. Nieckarz, and S. Zięba, Analytical description of ELF transients produced by cloud-to-ground lightning discharges, J. Geophys. Res., 115, D19104, DOI:10.1029/2009JD013033, 2010.

## Ważniejsze publikacje GRS cytowane w wykładzie

- Z. Nieckarz, A. Kulak, S. Zieba, and A. Odzimek, Cloud-to-ground lightning dipole moment from simultaneous observations by ELF receiver and combined direction finding and time-of-arrival lightning detection system, J. Geophys. Res., DOI:10.1029/2010JD014736, 2011.
- A. Kulak, J. Mlynarczyk, A new technique for reconstruction of the current moment waveform from the magnetic field component based on a gigantic jet associated lightning discharges recorded by ELF station, *Radio Science*, 46, RS2016, doi:10.1029/2010RS004475, 2011.
- A. Kulak, J. Mlynarczyk, M. Ostrowski, J. Kubisz, and A. Michalec, Analysis of ELF electromagnetic field pulses recorded by the Hylaty station coinciding with terrestrial gamma-ray flashes, J. Geophys. Res., 117, D18203, doi:10.1029/2012JD018205, 2012.
- A. Kulak, and J. Mlynarczyk, ELF Propagation Parameters for the Ground-Ionosphere Waveguide With Finite Ground Conductivity, *IEEE Transactions on Antennas and Propagations*, Vol. 61, No. 4, doi: 10.1109/TAP.2012.2227445, 2013.
- A. Kulak, J. Mlynarczyk, J. Kozakiewicz, An Analytical Model of ELF Radiowave Propagation in Ground-Ionosphere Waveguides With a Multilayered Ground, *IEEE Transactions on Antennas and Propagations*, 61, 9, 10.1109/TAP.2013.2268244, 2013.
- A. Kulak, J. Kubisz, S. Klucjasz, A. Michalec, J. Mlynarczyk, Z. Nieckarz, M. Ostrowski, and S. Zieba, Extremely low frequency electromagnetic field measurements at the Hylaty station and methodology of signal analysis, *Radio Science*, 49, doi:10.1002/2014RS005400, 2014.
- M. Dyrda. A Kulak, J. Mlynarczyk, M. Ostrowski, J. Kubisz, A. Michalec and Z. Nieckarz, Application of the Schumann resonance spectral decomposition in characterizing the main African thunderstorm center, *J. Geophys. Res.*, DOI: 10.1002/2014JD022613, 2014.
- J. Mlynarczyk, J. Bor, A. Kulak, M. Popek, J. Kubisz, An unusual sequence of sprites followed by a troll an analysis of ELF radio measurements and optical observations J. Geophys. Res., 120, doi:10.1002/2014JA020780, 2015.
- M. Dyrda, A. Kulak, J. Mlynarczyk, and M. Ostrowski, Novel analysis of a sudden ionospheric disturbance using Schumann resonance measurements, J. Geophys. Res. Space Physics, 120, doi:10.1002/2014JA020854, 2015.
- J. Kozakiewicz, A. Kułak, J. Młynarczyk, Analytical modeling of Schumann resonance and ELF propagation parameters on Mars with a multi-layered Ground, *Planetary and Space Science*, 117, 127–135, 2015.