

AKADEMIA GÓRNICZO-HUTNICZA IM. STANISŁAWA STASZICA W KRAKOWIE

Kwazikryształy - struktura atomowa, obraz dyfrakcyjny i modelowanie

Radosław Strzałka

Katedra Fizyki Materii Skondensowanej Wydział Fizyki i Informatyki Stosowanej AGH w Krakowie

Seminarium Wydziałowe, 18.03.2016

- 1. Kwazikryształy ikozaedryczne. Metody opisu struktury.
- 2. Metoda statystyczna (średniej komórki elementarnej). Rozwój metody statystycznej w opisie struktury układów aperiodycznych.
- 3. Zastosowanie metody statystycznej do opisu struktury kwazikryształów ikozaedrycznych.
- 4. Wpływ nieporządku na strukturę kwazikryształów (i innych układów aperiodycznych).
- 5. Analiza modeli wielowymiarowych kwazikryształów ikozaedrycznych w przestrzeni fizycznej.

Rodziny kwazikryształów

Ikozaedryczne (Shechtmann et al. 1984) Klasa Lauego: $m\overline{3}\overline{5}$

- Trójskładnikowe:
 - Al: Al-Cu-(Ru, Os, Fe);
 Al-Pd-(Mn, Re, Tc, Ru, Os)
 - Zn: Zn-Mg-(Hf, Zr);
 Al-Mg-(Ga, Ho, Tb, Y, Ns, Dy);
 Zn-Sc-(Ni, Cu, Co, Fe, Mn, Mg, Pt, Pd, Au)
 - Cd: Cd-Mg-(Y, Er, Ho, Tb, Dy, Gd)
- Dwuskładnikowe:
 - Cd-Yb; Cd_{\rm 84}Ca_{\rm 16}
 - Sc-Zn
 - Al-Mn

Dotychczas ilościowa analiza strukturalna jedynie dla Al-Pd-Mn i Cd-Yb Dekagonalne (osiowe) Klasa Lauego: 10/mmm

- Bendersky 1986 (metastabilne)
- Tsai 1989 (stabilne, Al-Ni-Co; Al-Cu-Co)
- Periodycznie ułożone aperiodyczne warstwy 2D
- Od 2 do 6 warstw na period
- Stabilne jedynie trójskładnikowe
 - Al-Ni-(Co, Fe, Rh)
 - Al-Cu-(Co, Rh, Ir)
 - Zn-Mg-(Dy, Er, Ho, Lu, Tm, Y)

Dotychczas ilościowa analiza strukturalna jedynie dla Al-Ni-Co i Al-Co-Cu

Naturalne kwazikryształy: $AI_{63}Cu_{24}Fe_{13}$

- odkrycie 2009 (Czukotka)
- Bindi *et al.* (2011)

Kwazikryształy ikozaedryczne

D. Shechtman, I. Blech, D. Gratias, J.W. Cahn, Phys. Rev. Lett. **53** (1984) 1951-1953

Odkrycie kwazikryształów: Dan Shechtman, 8 kwietnia 1982 w NBS w Waszyngtonie. Doktor Honoris Causa AGH, 4 września 2013.

Kwazikryształy ikozaedryczne

An-Pang Tsai et al. Jpn. J. Appl. Phys. 26 (1987) L1505

Modelowanie wielowymiarowe

Powierzchnie atomowe

Polega na przywróceniu periodyczności struktury w wyższej liczbie wymiarów

Modelowe pokrycie Ammanna (3D Penrose tiling)

W. Steurer, S. Deloudi, *Crystallography of quasicrystals*, (Heidelberg: Springer, 2009)

Struktura kwaziperiodyczna powstała przez rzutowanie z wielu wymiarów

W. Steurer, S. Deloudi, *Crystallography of quasicrystals*, (Heidelberg: Springer, 2009)

Klastrowe modele wielowymiarowe

i-YbCd_{5.7}

Modelowanie wielowymiarowe - problemy

- brak informacji o ułożeniu klastrów (stopień wypełnienia przestrzeni, połączenia międzyklastrowe)
- znacząca część atomów nie jest dobrze opisana (problem brakującej gęstości atomowej, nawet rzędu kilku %) – tzw. "glue atoms"
- brakująca gęstość atomowa powoduje problemy w obliczeniach struktury elektronowej i fononowej, a także w modelowaniu *ab initio* (obliczenia energetyczne)
- modele nie odtwarzają poprawnie prostych parametrów: gęstość, dokładny skład chemiczny
- otrzymuje się "zamrożony" obraz struktury (defekty nie mogą być łatwo uwzględnione), z dużymi obsadzeniami częściowymi i elipsoidami ADP
- modele wielowymiarowe nie mogą być efektywnie wykorzystane w badaniu własności kwazikryształów (elektrycznych, mechanicznych,...)

"glue atoms"

Koncepcja średniej komórki elementarnej (ŚĸE) (average unit cell concept - AUC)

$$F(k,q) = \iint_{AUC} P(u,v) \exp[i(nku + mqv)] dudv$$

Rozkład P(u,v) jest ciągły i stały, niezerowy tylko wzdłuż pewnej relacji skalowania v(u)

Każdą pozycję atomową można wyrazić w ŚKE:

$x = \alpha \lambda_k + u_x$	$\lambda_{\rm k}=2\pi/k$
$x = \beta \lambda_k + u_x$	$\lambda_{ m k}$ =2 π/q

Kształt ŚKE zależy od wyboru wektorów k i q.

ŚKE może być rozumiana jako rzut skośnokątny powierzchni atomowej na przestrzeń fizyczną

Koncepcja średniej komórki elementarnej (ŚĸE) przykład: ciąg Fibonacciego

LSLLSLSLLSLLSLSLSLSL...

 $L = \tau S$ $\tau = \frac{1 + \sqrt{5}}{2}$ *średnia odległość między węzłami:* $1 + \frac{1}{\tau^2} \approx 1.38$

Periodyczne serie pików w obrazie dyfrakcyjnym kwazikryształów

Opis statystyczny struktur harmonicznie modulowanych

 $x_{\rm n} = na + A\sin(q_0 na)$

$$F_{\rm n,m} = J_{-m} \left(kA \right)$$

Obwiednie czynnika strukturalnego (po lewej) i obrazu dyfrakcyjnego (po prawej) dla struktury harmonicznie modulowanej (A=0.05, a=1.0, q_0 =2 $\pi/\tau a$)

Przybliżenie 1D kwazikryształu za pomocą serii harmonicznych modulacji (podobieństwo w obrazie dyfrakcyjnym)

1/9/50 czynników modulujących

Pokrycie Ammanna

Rozszerzenie pokrycia Penrose'a na 3D – użycie dwóch jednostek strukturalnych – romboedrów:

ŚKE dla pokrycia Ammanna -wybór bazy przestrzeni odwrotnej

Baza ikozaedryczna

 $[\]begin{split} |k_x| = &13.7082 \ (0, -5, -5, 2, 6, 2); \\ |k_y| = &7.2068 \ (0, 2, -2, -3, 0, 3); \\ |k_z| = &17.9443 \ (9, 4, 4, 4, 4) \end{split}$

|kx|=22.1803 (0,-8,-8,3,10,3); |ky|=11.6609 (0,-3,3,5,0,-5); |kz|=4.2361 (2,1,1,1,1)

Baza kartezjańska

R. Strzałka *et al.*, Aperiodic Crystals (Dordrecht, Heidelberg: Springer Science+Business Media, 2013), pp. 203-210.

ŚKE dla pokrycia Ammanna -wybór bazy przestrzeni odwrotnej

1,0 Ι 0,8 0,6 0,4 0,2 0,0 10 20 30 0 ĸ

> Obraz dyfrakcyjny otrzymany numerycznie: pionowe linie – baza ikozaedryczna poziome kreski – baza kartezjańska

ŚKE dla pokrycia Ammanna -wybór bazy przestrzeni odwrotnej

Baza ikozaedryczna

Baza kartezjańska

P(**u**) numerycznie

Wektor falowy (pozycja refleksu):

 $\mathbf{k} = h \, \mathbf{q_{0x}} + h' \, \mathbf{k_{0x}} + k \, \mathbf{q_{0y}} + k' \, \mathbf{k_{0y}} + l \, \mathbf{q_{0z}} + l' \, \mathbf{k_{0z}}$ $\mathbf{q_{0x}} = \begin{bmatrix} \frac{1}{\sqrt{\tau+2}}, 0, 0 \end{bmatrix}; \ \mathbf{q_{0y}} = \begin{bmatrix} 0, \frac{1}{\sqrt{\tau+2}}, 0 \end{bmatrix}; \ \mathbf{q_{0z}} = \begin{bmatrix} 0, 0, \frac{1}{\sqrt{\tau+2}} \end{bmatrix}$ $\mathbf{k_{0x}} = \begin{bmatrix} \frac{\tau}{\sqrt{\tau+2}}, 0, 0 \end{bmatrix}; \ \mathbf{k_{0y}} = \begin{bmatrix} 0, \frac{\tau}{\sqrt{\tau+2}}, 0 \end{bmatrix}; \ \mathbf{k_{0z}} = \begin{bmatrix} 0, 0, \frac{\tau}{\sqrt{\tau+2}} \end{bmatrix}$ $q_0 = \frac{2}{\sqrt{\tau+2}} \approx \mathbf{0.5257}, \ k_0 = \frac{2\tau}{\sqrt{\tau+2}} \approx \mathbf{0.8507}$

P(**u**) vs. Pow. atomowa

R. Strzałka *et al.,* Aperiodic Crystals 2013, pp. 203-210.

Czynnik strukturalny dla pokrycia Ammanna – dekoracja jednoatomowa w wierzchołkach

Czynnik strukturalny (geometryczny):

$$F(\mathbf{k}) = \sum_{j} f_{j} \exp\left(i\mathbf{k} \cdot \mathbf{r}_{j}^{\parallel}\right)$$

1)
$$\begin{aligned} x &= \alpha_1 \lambda_{k1} + u_x & x = \beta_1 \lambda_{q1} + v_x \\ y &= \alpha_2 \lambda_{k2} + u_y & y = \beta_2 \lambda_{q2} + v_y \\ z &= \alpha_3 \lambda_{k3} + u_z & z = \beta_3 \lambda_{q3} + v_z \end{aligned}$$

2)
$$\lambda_{ki} = \frac{2\pi}{k_{0i}}; \quad \lambda_{qi} = \frac{2\pi}{q_{0i}}; \quad i = 1, 2, 3$$

3)
$$\mathbf{k} \cdot \mathbf{r}^{\parallel} = h_1 q_0 v_x + h_2 k_0 u_x + h_3 q_0 v_y + h_4 k_0 u_y + h_5 q_0 v_z + h_6 k_0 u_z$$

$$v_x = -\tau^2 u_x$$

 $v_y = -\tau^2 u_y$

$$v_z = -\tau^2 u_z$$

5)
$$k_0 = 2\pi\tau/(\tau+2)^{1/2}$$
$$q_0 = 2\pi/(\tau+2)^{1/2}$$

R. Strzałka, J. Wolny, Acta Phys. Pol. A 126 (2014) 585-588.

5)

Czynnik strukturalny dla pokrycia Ammanna - dekoracja jednoatomowa w wierzchołkach

Czynnik strukturalny (geometryczny):

$$F(\mathbf{k}) = \sum_{j} f_{j} \exp\left(i\mathbf{k} \cdot \mathbf{r}_{j}^{\parallel}\right)$$

1)
$$\begin{aligned} x &= \alpha_1 \lambda_{k1} + u_x & x = \beta_1 \lambda_{q1} + v_x \\ y &= \alpha_2 \lambda_{k2} + u_y & y = \beta_2 \lambda_{q2} + v_y \\ z &= \alpha_3 \lambda_{k3} + u_z & z = \beta_3 \lambda_{q3} + v_z \end{aligned}$$

2)
$$\lambda_{ki} = \frac{2\pi}{k_{0i}}; \quad \lambda_{qi} = \frac{2\pi}{q_{0i}}; \quad i = 1, 2, 3$$

3)
$$\mathbf{k} \cdot \mathbf{r}^{\parallel} = h_1 q_0 v_x + h_2 k_0 u_x + h_3 q_0 v_y +$$

 $v_x = -\tau^2 u_x$
4) $v_y = -\tau^2 u_y$
 $v_z = -\tau^2 u_z$
5) $k_0 = 2\pi \tau / (\tau + 2)^{1/2}$
 $q_0 = 2\pi / (\tau + 2)^{1/2}$

$$F(\mathbf{k}) = \int_{AUC} \exp(i\boldsymbol{\chi} \cdot \mathbf{u}) d^{3}\mathbf{u}$$

$$\boldsymbol{\chi} = [\chi_{x}, \chi_{y}, \chi_{z}] = k_{0}[(h_{2} - \tau h_{1}); (h_{4} - \tau h_{3}); (h_{6} - \tau h_{5})]$$

$$\mathbf{u} = [u_{x}, u_{y}, u_{z}] = \left[-\frac{1}{\tau}x^{\perp}; -\frac{1}{\tau}y^{\perp}; -\frac{1}{\tau}z^{\perp}\right],$$

$$F(\mathbf{k}) = \int_{0}^{\lambda_{k1}} \int_{0}^{\lambda_{k2}} \int_{0}^{\lambda_{k3}} P(u_{x}, u_{y}, u_{z}) \exp(i\boldsymbol{\chi} \cdot \mathbf{u}) d^{3}\mathbf{u}$$

R. Strzałka, J. Wolny, Acta Phys. Pol. A 126 (2014) 585-588.

Dekoracja jednostek strukturalnych

Obraz dyfrakcyjny – test czynnika strukturalnego (dekoracja w wierzchołkach)

$$F(\boldsymbol{\chi}) = \sum_{l=1}^{10} \left[F(\boldsymbol{\chi})_l^{\text{OR}} \sum_{j=1}^{N_1} f_j \alpha_j \exp(i\mathbf{k} \cdot \mathbf{r}_j^l) \right] + \sum_{l=1}^{10} \left[F(\boldsymbol{\chi})_l^{\text{AR}} \sum_{j=1}^{N_2} f_j \alpha_j \exp(i\mathbf{k} \cdot \mathbf{r}_j^l) \right]$$

Możliwy rozdział czynnika strukturalnego na część "sieciową" (transformaty Fouriera po romboedrycznych rozkładach w ŚKE) oraz "atomową" (czynnik fazowy)

R. Strzałka, J. Wolny, Acta Phys. Pol. A 126 (2014) 585-588. R. Strzałka *et al.*, Acta Cryst. A 71 (2015) 279-290.

Model prostej dekoracji

$$F(\mathbf{\chi}) = \sum_{l=1}^{10} \left(F(\mathbf{\chi})_l^{\text{OR}} \sum_{j=1}^{N_1} f_j \alpha_j e^{i\mathbf{k} \cdot \mathbf{r}_j^{l}} \right) + \sum_{l=1}^{10} \left(F(\mathbf{\chi})_l^{\text{AR}} \sum_{j=1}^{N_2} f_j \alpha_j e^{i\mathbf{k} \cdot \mathbf{r}_j^{l}} \right)$$

Frakcje atomów w charakterystycznych pozycjach romboedrów

	1	2	3	4	5	6	7	8	9	10
OR	0.05	0.15	0.15	0.15	0.15	0.15	0.05	0.15	0.2	0.2
AR	0.05	0.05	0.05	0.35	0.05	0.35	0.05	0.05	0.4	0.1
	11	12	13	14	15	16	17	18	19	20
OR	0.3	0.3	0.2	0.3	0.2	0.3	0.3	0.3	0.2	0.2
AR	0.1	0.4	0.1	0.4	0.1	0.4	0.1	0.4	0.4	0.1

Zastosowanie modelu prostej dekoracji w modelach wielowymiarowych: Zn-Mg-Ho, Cd-Yb.

Model prostej dekoracji

Model kwazikryształów ikozaedrycznych - podsumowanie i perspektywy

- Opracowana została analityczna formuła czynnika strukturalnego dla kwazikryształu ikozaedrycznego o dowolnej dekoracji sieci Ammanna przy użyciu metody statystycznej (w przestrzeni fizycznej).
- Czynnik strukturalny sprawdzono dla modelu "prostej dekoracji" i dla danych "eksperymentalnych" (wygenerowanych numerycznie).
- Czynnik strukturalny jest gotowy do zaimplementowania w procedurze udokładniania.
- Planowane jest połączenie metody udokładniania w oparciu o dane dyfrakcyjne i obliczenia energetyczne
- Możliwe jest odejście od obliczeń analitycznych i dopasowanie czynnika struktury zupełnie numerycznie

Poprawki na fonony i fazony AGH w kwazikryształach

Fonony są związane z przesunięciami atomów wokół położenia równowagi (np. wskutek drgań termicznych). Możemy sobie wyobrazić różną funkcję rozkładu atomów wokół położeń równowagi. Poprawka: czynnik Debye'a-Wallera

$$D_{phon}(\mathbf{k}) = \exp\{-2\pi^2 (k_{\rm x}^2 + k_{\rm y}^2 + k_{\rm z}^2) b_{phon}\}$$

Fazony są związane z przeskokami atomów między węzłami (skutkuje to zmianą fazy w strukturze – stąd fazon). Fazon mają duże znaczenie w termodynamice krystalizacji kwazikryształów i wpływają na strukturę. Standardowa poprawka (tzw. fazonowy czynnik Debye'a-Wallera):

$$D_{phas}(\mathbf{k}^{\perp}) = \exp\left\{-\frac{1}{16\pi^2} \left(k_{\rm x}^{\perp^2} + k_{\rm y}^{\perp^2} + k_{\rm z}^{\perp^2}\right) b_{phas}\right\}$$

Wprowadzenie fononów powoduje rozmycie relacji skalowania wzdłuż kierunku [1,1] w parametrycznej przestrzeni (u,v), co przekłada się także na modyfikację rozkładu prawdopodobieństwa P(u):

• Korekta ze względu na fonony dla struktur aperiodycznych jest przeprowadzana analogicznie jak dla struktur periodycznych

 Korekta w postaci czynnika Debye'a-Wallera jest wystarczająca, aby opisać piki w szerokim zakresie wartości wektora rozpraszania

• Inne postacie funkcji można ew. stosować w celu poprawy jakości dopasowania na końcowych etapach udokładniania.

Kwazikryształy dekagonalne – udokładnienie w przestrzeni fizycznej

1. Basic Ni-rich $AI_{72}Ni_{20}Co_8$

(Wolny, Kozakowski, Kuczera, Takakura, Z. Kristallogr. 223, 847-850 (2008))

2. Basic Ni-rich Al_{70.6}Ni_{20.7}Co_{6.7}

(Kuczera, Kozakowski, Wolny, Steurer, J. Phys.: Conf. Ser. 226, 01200 (2010))

- 3. Edagawa phase Al_{72.0}Ni_{15.6}Co_{12.4}, superstructure type I (Kuczera, Wolny, Fleischer, Steurer, *Phil. Mag.* **91**, 2500-2509 (2011))
- 4. Comparative study of Al_{64.4}(Cu,Co)_{35.6}, Al_{60.6}Cu_{19.2}Rh_{20.2}, Al_{58.3}Cu_{26.6}Ir_{16.9} (Kuczera, Wolny, Steurer, *Acta Cryst. B* **68**, 578-589 (2012))

przed przeskokiem

Fonony i fazony – podsumowanie

- Wyzwaniem współczesnej krystalografii jest uwzględnienie bardzo słabych refleksów dyfrakcyjnych w procesie udokładniania (szczególnie struktur złożonych). Poprawna korekta na fonony i fazony jest kluczowa.
- Korekta na fonony dla kwazikryształów jest taka sama jak w przypadku struktur periodycznych (czynnik Debye'a-Wallera)
- Dla fazonów klasyczny czynnik Debye'a-Wallera, $\exp(-k_{\perp}^2 \sigma^2)$, jest raczej bezużyteczny.
- Metoda statystyczna (ŚKE) daje unikalne możliwości poprawnej interpretacji fononów i fazonów w strukturach złożonych.

Podziękowania

WYDZIAŁ FIZYKI I INFORMATYKI STOSOWANEJ

prof. dr hab. Janusz Wolny dr inż. Bartłomiej Kozakowski dr inż. Paweł Kuczera dr Anna Wnęk dr Lucjan Pytlik mgr inż. Maciej Chodyń mgr inż. Ireneusz Bugański

Podziękowania

WYDZIAŁ FIZYKI I INFORMATYKI STOSOWANEJ

prof. dr hab. Janusz Wolny dr inż. Bartłomiej Kozakowski dr inż. Paweł Kuczera dr Anna Wnęk dr Lucjan Pytlik mgr inż. Maciej Chodyń mgr inż. Ireneusz Bugański

Dziękuję za uwagę!