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Postępowanie habilitacyjne: cykl 12 publikacji (2011-2018), 

dotyczących badania stanów rezonansowych w termoelektrykach
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Plan wystąpienia

0. Krótkie wprowadzenie – metody, materiały termoelektryczne 

1. Stan rezonansowy (RL) na przykładzie Cu-Ni i PbTe:Tl. 

Kontrowersje wokół RL, wpływ na strukturę elektronową, problem 

pasma domieszkowego i lokalizacji, termosiła

2. RL jako nowy mechanizm domieszkowania (Bizmut + In, Ga, Sn)

3. Poszukiwanie nowych domieszek rezonansowych: stop Bi-Sb, 

tetradymity (Bi2Te3), Mg2Sn

 Prace finansowane w ramach grantów NCN: MAESTRO (2011/02/A/ST3/00124) i 
Sonata Bis 7 (2017/26/E/ST3/00119)
oraz USA AFOSR-MURI “Cryogenic Peltier Cooling” (#FA9550-10-1-0533)
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Collaboration

● Faculty of Physics and Applied Computer 

Science, AGH University of Science and 

Technology, Kraków, Poland: 

prof. Janusz Toboła

prof. Stanisław Kaprzyk

(KKR-CPA calculations)

● Department of Mechanical & Aerospace 

Engineering, Ohio State University, 

Columbus, Ohio (USA): prof. Joseph P. 

Heremans and his group

(experiment)
● Institut Jean Lamour, Nancy (France): 

prof. Bertrand Lenoir and his group

(experiment)
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Methods: DFT

● DFT – density functional theory – single-partice description of the electronic 

structure of solids. Ab iniito calculations, input = crystal structure parameters.

● Schrödinger equation (+ relativistic corrections & spin-orbit coupling) with the 

effective potential, which is a functional of electrons' density.

●                                         all the difficult terms in the exchange-correlation (XC) 

potential, which is expected to be smaller, than other terms 

● XC treated in the local density approximation (LDA)  

or generalized gradient approximation (GGA) 
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DFT implementations: KKR-CPA & LAPW

CPA

Green function of the  „CPA atom” 
(self-consistent)

No additional scattering on average 
if “CPA atom” replaced by A/B

● Doped crystal: no periodicity - CPA:

● KKR-CPA method (Korringa-Kohn-Rostoker with Coherent Potential Approximation)  

computer codes: Krakow AGH-UST, S. Kaprzyk and Munich SPRKKR, H. Ebert)

CPA: brings back the periodicity - No supercells 

any concentration 0-100% of impurity in the same primitive cell

From GF we can get many single-particle properties (DOS, BSF,..) 

● Complementary calculations & relaxation effects: FP-LAPW method, pure crystals  

(possible doping via supercells),  Wien2k code (P. Blaha et al, Vienna)
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Introduction – thermoelectric materials
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Introduction – thermoelectric materials

how is zT related to efficiency? any why optimization is difficult?

Possible ways of improving TE materials:

1) reduction of the thermal conductivity 

(e.g. nanostructuring)

2) “band engineering” to improve PF

T
S

zT

2



related quantities: 

large  – small S: small Power Factor S2

large  – large : small zT
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standard strategy to optimize the TE properties: 

tune the carrier concentration via doping

Introduction – thermoelectric materials

Pisarenko curve: S(n,p)

best TE: doped semiconductors

metal S ~ 1-10 mV/K (300 K)

semiconductors: 50-300 mV/K (300 K)

T
S

zT

2



Problem: 

how to beat the Pisarenko relation ?!

thermopower S 
bounded to carrier 
concentration
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TE generators:TE generators:
waste heat recoverywaste heat recovery

RTG in space RTG in space 
applicationsapplications

Mars Rover CuriosityMars Rover Curiosity
2011, PbTe2011, PbTe

Cryogenic cooling of detectors Power Pot

Introduction – thermoelectric materials
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Motivation: PbTe:Tl

increase of thermopower after Tl doping

● Thermoelectric community: 

  2% Tl doped PbTe

  J.P. Heremans et al. Science (2008)

 increase in thermopower and zT due to 

“resonant distortion of electronic DOS”

Science, 321, 554 (2008)

PbTe, fcc rock salt structure
PbTe + Na

PbTe + Tl

since 2011: my collaboration with JP Heremans' group
3x at OSU as a postdoctoral researcher
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● Questioning of RL mechanism of S enhancement:

●Resonance = strong scattering, mobility reduction, bad for TE

●Peak in DOS – localized states, do not take part in transport, or 

form a narrow impurity band. Narrow band = small . 

Two band system with 1 being narrow = no increase in S

● Original explanation: “distortion” of DOS due to resonant state – 

increase in DOS at EF by DOS peak from resonant impurity

m*     S  equivalent to increase in m* 

Motivation: PbTe:Tl

increase of thermopower after Tl doping
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1) To investigate from first principle calculations, how RL 

modifies electronic structure of the studied material

2) To verify whether RL may indeed increase the thermopower 

in semiconductor (counterarguments of localized states & 

narrow impurity band) 

3) To search for new resonant impurities

Goal of my research
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“Classical” vs resonant impurity: DOS

● Resonant impurity: resonant level (RL) or „virtual bound 

state” (Friedel, 1956), may lead to strong modifications of host 

bandstructure and resonant scattering (first works on diluted 

metallic alloys)

● „Classical” impurity: (rigid-band-like) does not change 
(much) the host band structure, adds carriers (e.g. Na:PbTe)

● Fingerprint: peak in DOS (diluted concentration ~0.1%)

● Possible effects: 

➔ strong (resonant) scattering (s-d in Cu-Ni)

➔ magnetism - (semi)magnetic semiconductors 

➔ charge trap, EF in the gap (In in PbTe)

➔ increase of thermopower in low T (HgSe:Fe) or high T 

(PbTe:Tl, SnTe:In, Bi2Te3:Sn,...) 

➔ superconductivity (?)

PbTe:Na
rigid band

Cu:Ni
Resonant

● Very often in (semi)magnetic semiconductors 
HgSe:Fe, PbTe:Cr... (PAS, Warsaw!)
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Example of Constantan (Cu-Ni)

● Photoemission spectra of Cu-Ni alloy  - does not follow the rigid band model 

Cu-Ni alloy, Ni concentrations 35-50%, one of the 
best TE among metallic alloys, thermocouples

(expected shift in EF)

 described in ~.70 using KKR-CPA 

– resonant state (virtual bound state) is formed

Peak from the rapid change of the phase shift 

papers by Butler, Stocks, Gyorffy, Ehrenreich, Faulkner,...
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Example of Constantan (Cu-Ni)

● Ni Resonant level from KKR-CPA 

Cu-Ni alloy, Ni concentrations 35-50%, one of the 
best TE among metallic alloys, thermocouples
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“Classical” vs resonant impurity: bands

Bands: disordered system - no Bloch states – E(k) not defined (in general)

Bloch spectral functions :

Crystal: 
Dirac delta

Alloy: 
Lorentzian

● BSF shows band center 

● sharp bands, life time:infinite

● BSF: Band center + band width

● “blurred” bands, finite life time

k-resolved DOS:
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“Classical” vs resonant impurity: bands

Bands: disordered system - no Bloch states – E(k) not defined (in general)

Bloch spectral functions : 

Crystal: 
Dirac delta

Alloy: 
Lorentzian

● BSF: Band center + band width

● “blurred” bands, finite life time

Resonant impurity: BSF very wide and non-

Lorentzian (no well-defined bands)k-resolved DOS:
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Example of Constantan (Cu-Ni)
Cu-Ni alloy, Ni concentrations 35-50%, one of the 
best TE among metallic alloys, thermocouples

Bloch spectral function:
non-Lorentzian &
no sharp bands!

● Ni Resonant level from KKR-CPA 
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how to deal with conductivity in such a disordered system?

In a case of a strongly scattering system (resonant levels):

Kubo-Greenwood formalism in KKR-CPA

● This way you may compute (E) function at 

T = 0 K with no external parameters. 

● 1/(EF) is the residual resistivity  

● Then we may compute the thermopower:

Problem with the Boltzmann approach: 

no band center – how to calculate velocity (gradient of E(k))

Example of Constantan (Cu-Ni)
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Cu-Ni alloy & resonances

● transport properties dominated by the strong 
scattering on the resonance

● very good agreement of the computed 
thermopower with experiment, even though  
phonons are neglected 

(1/t 1/tph + 1/te = 1/te )

(tph >> te)

300 K:

Scalc = -45 uV/K

Sexpt = -42 uV/K
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➔Strongly smeared band structure due to presence of RL

➔KKR-CPA + Kubo formalism works very well for metallic alloys 

with resonant states

➔Large thermopower due to the strong dependence of the 

relaxation time on energy

=> But this is a concentrated alloy (30-50 % of “dopant”) 

May we apply similar approach to semiconductors (with max. 1-

2% of dopants?)

Lessons from the Cu-Ni example
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PbTe:Tl vs PbTe:Na – density of states

PbTe:Na
rigid band

PbTe:Tl
resonant 

level
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PbTe:Tl vs PbTe:Na – density of states

PbTe:Na
rigid band

PbTe:Tl
resonant 

level
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PbTe:Tl vs PbTe:Na – density of states

Larger dopant concentration – RL peak broadens & forms a “DOS 
hump”

Important: in 2% Tl-doped PbTe (most likely) carrier concentration is modified by 

Te vacancies, taken into account in our studies

Effect of Tl = increase of DOS from redistribution of electronic states, transferred 
from lower-lying parts
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➔Non-Lorentzian BSF with a shoulder 

➔Strong band blurring

PbTe:Tl 

spectral functions
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PbTe:Tl vs PbTe:Na

spectral functions & life time

strong reduction of the life timeweak scattering from Na

Tl

Na
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PbTe:Tl – no impurity band

Supercell calculations - narrow impurity band? 

2-band system:

No enhancement 
in S if 1 << 2Hoang, Mahanti PRB 2008

no impurity band from 
spectral functions in KKR-CPA
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PbTe:Tl – no impurity band

2-band system:

No enhancement 
in S if 1 << 2Spectral functions are able to investigate this problem:

counter-example of PbTe:Titanium, where an impurity band 

is formed – see B. Wiendlocha, APL 2014

PbTe:Ti
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Calculations for PbTe with:
➔2% Tl
➔2% Tl + 0.66% Te Vac
➔2% Tl + 0.83% Te Vac
➔2% Tl + 8% S on Te
➔1% Na

Effect of Vac or S/Te seen in 
lower E
near VB edge RL dominates

Na-doped: much higher 
conductivity due to the 
longer life time t
RL reduces 

conductivity calculated at T = 0 K (Kubo formalism), takes into 
account scattering on impurities and RL

Transport function & residual resistivity PbTe:Tl vs Na
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residual resistivity: comparison with experiment 

independent proof of resonant level

➔ relatively good agreement

➔ independent proof for the existence of resonant state = 

30x difference in r between Na and Tl doping

➔ support for the self-compensation model (r would be too small) 

Transport function & residual resistivity PbTe:Tl vs Na
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➔ Confirmation of the relative increase of S between Tl and Na doping

Thermopower calculations & comparison with 

experiment – PbTe:Tl vs Na

Tl

Na
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➔ Systematic overestimation of S comparing to experiment

Thermopower calculations & comparison with 

experiment – PbTe:Tl vs Na

Tl

Na
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Source of the overestimation?

Possible source of overestimation: 

-> LDA exchange-correlation problem (S-

band  too high)

-> Neglect of the electron-phonon 

scattering 

for more see: B. Wiendlocha, Phys Rev B 2018 

Tl

Na
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Source of the overestimation?

However, this is a systematic error, present in both cases, so it does 

not affect the conclusion on a relative increase of the thermopower due 

to resonant state

Tl

Na
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Comparison PbTe:Tl vs Cu-Ni

●  controlled by n

● scattering on RL 

(s states) not that strong

● Phonons more important, 

tph ~ tres 

S > 0 S < 0

●  controlled by t
● scattering on RL 

(d states) very strong

● Phonons not important, 

tph > tres 

PbTe:Tl

Cu-Ni

semiconductor: 
less-intuitive RL 

metal: 
more-intuitive RL 
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#1 summary: PbTe:Tl

           Resonant level may increase thermopower of semiconductors

● “Delocalized” resonant level does not form an impurity band (in PbTe:Tl)

(important counter-example of PbTe:Titanium, where an impurity band is 

formed – see B. Wiendlocha, APL 2014)

● Transfer of electronic states towards the valence band edge – increase in the 

number of carriers – thermopower enhancement 

● Comparison of PbTe:Tl with PbTe:Na - enhancement of S confirmed 

quantitatively, in spite of the stronger scattering on RL

● independent evidence of RL – analysis of the residual resistivity
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#1 References
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#2: RL as a novel doping mechanism – Bismuth + In, Ga, Sn
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Different aspect of RL – novel doping 
mechanism (?) in Bi:In

Hyungyu Jin1, Bartlomiej Wiendlocha1,3, Joseph P. Heremans1,2

1. Department of Mechanical Engineering
2. Department of Physics, The Ohio State University
3. AGH University of Science and Technology, Krakow, Poland

Ashcroft & Mermin, 
“Solid State Physics”
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(111)

(222)

• Pure Bi (5N), and 0.09%, 0.4% indium doped single crystalline Bi
– Grown by modified horizontal Bridgman method

• Samples were cleaved along trigonal plane

• XRD measurements to detect single crystal peaks

Single crystals of Bi:In - sample preparation

Bi as a starting point to optimize Bi-Sb alloy (best TE for cryogenic applications): 
Bi1-xSbx (zT ~ 0.5 @ T < 200K)
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Indium is an acceptor in bismuth

0 2 4 6
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N 
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(1017cm-3)
P
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0.09% In 0.74 3.2 3.94

0.4% In 0.58 6.5 7.08

0.4% In

0.09% In

Hall

SdH
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How come indium is an acceptor in bismuth?

Indium and bismuth are both trivalent:

How can indium become an acceptor in bismuth?

In: [Kr] 4d10 5s2 5p1

Bi: [Xe] 4f14 5d10 6s2 6p3

Moreover: transport properties suggest that 
neutral impurity scattering is observed

-> Indium is both neutral and acceptor?
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1 Bi e-
1 In e-

2 holes

• Hyperdeep defect state (HDS) 
deprives of two electrons from 
the main valence block! 
(including 1 from Bi)

• Deep RL as a source of p-type 
doping

• Near EF - “local” rigid band

Doping via deep RL
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Charge density distribution

Indium is both an acceptor (via 

deep RL) and “neutral” impurity 

(3 valence electrons)
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Revisit Bi:Sn

• Similar effect (theory and experiment) for 
Bi:Ga (isoelectronic)

●  Sn has been known as a classical 
monovalent acceptor in Bi since 1960.

• Here, we show that Sn is not a simple 
acceptor impurity!

• Similar behavior with In and Ga in Bi

• Doping through HDS, but here Sn 
is not neutral (4 valence e)
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#2 summary: Bi:In

• Indium is an isovalent acceptor in bismuth
– More Indium, higher hole concentration

• We suggest doping through formation of a hyperdeep RL as a 
new doping mechanism

• Allows to avoid an ionized impurity scattering 

• Mechanism more general – similar for Sn and Ga in Bi

• Indium introduces neutral impurity scattering over wide 
temperature range
– Enhanced S  zT 
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#3: search for new resonant impurities in thermoelectrics
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Theoretical predictions – Bi & BiSb

● RL on potassium!

● experiment: zT +50% !!

● but: problem with samples 

(no second sample)
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➔ Identification of RL on Sn in As2Te3

 

➔ theoretical predictions of RLs (Sn, Al, 
Ga) for Bi2Se3, Bi2Te2Se and Bi2Te3

Theoretical predictions – Tetradymites 

(Bi2Te3 - related)
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➔ Ambiguous behavior of Ag in Mg2Sn 

(RL on Sn site, rigid-band on Mg site)

Theoretical predictions – Mg2Sn
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Summary

           Resonant levels are interesting!

● Delocalized resonant level may increase thermopower

● Deep resonant level may lead to isovalent doping mechanism

● Calculations are able to predict existence of new RLs

Thank you for your attention!
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