

AGH UNIVERSITY OF SCIENCE AND TECHNOLOGY

Domieszki rezonansowe w materiałach termoelektrycznych – struktura elektronowa i własności transportowe.

Bartłomiej Wiendlocha

Katedra Fizyki Materii Skondensowanej Wydział Fizyki i Informatyki Stosowanej Akademia Górniczo-Hutnicza w Krakowie

Seminarium Wydziałowe WFiIS AGH Kraków, 12.10.2018

Postępowanie habilitacyjne: cykl 12 publikacji (2011-2018),

dotyczących badania stanów rezonansowych w termoelektrykach

- [H1] C. M. Jaworski, B. Wiendlocha, V. Jovovic and J. P. Heremans, "Combining alloy scattering of phonons and resonant electronic levels to reach a high thermoelectric figure of merit in PbTeSe and PbTeS alloys" Energy & Environmental Science 4, 4155 (2011).
- [H2] C.M. Orovets, A.M. Chamoire, H. Jin, B. Wiendlocha and J.P. Heremans, "Lithium as an Interstitial Donor in Bismuth and Bismuth-Antimony Alloys", Journal of Electronic Materials 41, 1648 (2012).
- [H3] J. P. Heremans, B. Wiendlocha and A. M. Chamoire "Resonant levels in bulk thermoelectric semiconductors" Energy & Environmental Science 5, 5510 (2012).
- [H4] B. Wiendlocha, "Fermi surface and electron dispersion of PbTe doped with resonant Tl impurity from KKR-CPA calculations", Physical Review B 88, 205205 (2013).
- [H5] B. Wiendlocha, "Localization and magnetism of the resonant impurity states in Ti doped PbTe", Applied Physics Letters 105, 133901 (2014).
- [H6] S. Kim, B. Wiendlocha, H. Jin, J. Tobola, J.P. Heremans, "Electronic structure and thermoelectric properties of p-type Ag-doped Mg₂Sn and Mg₂Sn_{1-x}Si_x (x = 0.05, 0.1)", Journal of Applied Physics **116**, 153706 (2014).

- [H7] H. Jin, B. Wiendlocha and J. P. Heremans, "P-type doping of elemental bismuth with indium, gallium and tin: a novel doping mechanism in solids" Energy & Environmental Science 8, 2027 (2015).
- [H8] B. Wiendlocha, K. Kutorasiński, S. Kaprzyk, J. Tobola, "Recent progress in calculations of electronic and transport properties of disordered thermoelectric materials", Scripta Materialia 111, 33 (2016).
- [H9] B. Wiendlocha, "Resonant Levels, Vacancies, and Doping in Bi₂Te₃, Bi₂Te₂Se, and Bi₂Se₃ Tetradymites", Journal of Electronic Materials 45, 3515 (2016).
- [H10] J.P. Heremans, B. Wiendlocha, H. Jin, Thermoelectric Materials with Resonant States, rozdział rozdział 11.3 (strony 441 - 451) w monografii Advanced Thermoelectrics: Materials, Contacts, Devices, and Systems, ed. Z. Ren, Y. Lan, Qi. Zhang, CRC Press, Taylor & Francis Group, Boca Raton, FL (USA), 2018.
- [H11] B. Wiendlocha, J-B. Vaney, C. Candolfi, A. Dauscher, B. Lenoir, and J. Tobola, "An Sn-induced resonant level in β-As₂Te₃", Physical Chemistry Chemical Physics 20, 12948 (2018).
- [H12] B. Wiendlocha, "Thermopower of thermoelectric materials with resonant levels: PbTe:Tl versus PbTe:Na and $Cu_{1-x}Ni_x$ ", Physical Review B 97, 205203 (2018).

0. Krótkie wprowadzenie – metody, materiały termoelektryczne

1. Stan rezonansowy (RL) na przykładzie Cu-Ni i PbTe:Tl.

Kontrowersje wokół RL, wpływ na strukturę elektronową, problem

pasma domieszkowego i lokalizacji, termosiła

2. RL jako nowy mechanizm domieszkowania (Bizmut + In, Ga, Sn)

3. Poszukiwanie nowych domieszek rezonansowych: stop Bi-Sb,

tetradymity (Bi2Te3), Mg2Sn

NARODOWE CENTRUM NAUKI

Prace finansowane w ramach grantów NCN: MAESTRO (2011/02/A/ST3/00124) i **Sonata Bis 7** (2017/26/E/ST3/00119) oraz **USA AFOSR-MURI** "Cryogenic Peltier Cooling" (#FA9550-10-1-0533)

Collaboration

Faculty of Physics and Applied Computer
 Science, AGH University of Science and
 Technology, Kraków, Poland:
 prof. Janusz Toboła

prof. Stanisław Kaprzyk

(KKR-CPA calculations)

Department of Mechanical & Aerospace
Engineering, Ohio State University,
Columbus, Ohio (USA): prof. Joseph P.
Heremans and his group

(experiment)

• Institut Jean Lamour, Nancy (France):

prof. Bertrand Lenoir and his group

(experiment)

• **DFT – density functional theory –** single-partice description of the electronic structure of solids. *Ab iniito* calculations, input = crystal structure parameters.

$$\mathcal{H}\Psi(\boldsymbol{r}_1,\ldots,\boldsymbol{r}_N) = E\Psi(\boldsymbol{r}_1,\ldots,\boldsymbol{r}_N) \quad \square \qquad \left[-\frac{\hbar^2}{2m}\nabla^2 + V(\vec{r})\right]\Psi(\vec{r}) = E\Psi(\vec{r})$$

• Schrödinger equation (+ relativistic corrections & spin-orbit coupling) with the effective potential, which is a functional of electrons' density.

• $V = V_{jon} + V_{el/gaz} + V_{xc}$ all the difficult terms in the exchange-correlation (XC) potential, which is expected to be smaller, than other terms

• XC treated in the local density approximation (LDA) $E_{xc} \propto n(r)^{\alpha}$ or generalized gradient approximation (GGA) $E_{xc} \propto [n(r)^{\alpha}, \nabla n(r)]$

DFT implementations: KKR-CPA & LAPW

• **KKR-CPA method** (Korringa-Kohn-Rostoker with Coherent Potential Approximation) computer codes: Krakow AGH-UST, S. Kaprzyk and Munich SPRKKR, H. Ebert)

• Doped crystal: no periodicity - CPA:

Green function of the "CPA atom" (self-consistent)

$$\langle G \rangle = x_A G^A + x_B G^B$$

No additional scattering on average if "CPA atom" replaced by A/B

CPA: brings back the periodicity - No supercells any concentration 0-100% of impurity in the same primitive cell From GF we can get many single-particle properties (DOS, BSF,..)

• Complementary calculations & relaxation effects: FP-LAPW method, pure crystals

(possible doping via supercells), Wien2k code (P. Blaha et al, Vienna)

Seebeck effect - potential gradient from temperature gradient **Peltier effect** – cooling of one side due to current flow

AGH how is zT related to efficiency? any why optimization is difficult?

$$zT = \frac{S^2 \sigma}{\kappa} T \quad S = -\frac{1}{eT} \frac{L^{(1)}}{L^{(0)}} \qquad L^0 = \sigma$$
$$L^n = \int dE \left(-\frac{\partial f}{\partial E}\right) (E - \mu_c)^n \sigma(E)$$

related quantities:

large σ – small S: small Power Factor S² σ large σ – large κ : small zT

Possible ways of improving TE materials:
1) reduction of the thermal conductivity (e.g. nanostructuring)
2) "band engineering" to improve PF

best TE: doped semiconductors

standard strategy to optimize the TE properties: tune the carrier concentration via doping

$$\sigma \propto \frac{ne^2\tau}{m^*} \quad zT = \frac{S^2\sigma}{\kappa}T$$

$$S = -\frac{1}{eT} \frac{L^{(1)}}{L^{(0)}} \qquad L^0 = \sigma$$
$$L^n = \int dE \left(-\frac{\partial f}{\partial E} \right) (E - \mu_c)^n \sigma(E)$$

metal S ~ 1-10 μV/K (300 K) semiconductors: 50-300 μV/K (300 K)

Problem:

how to beat the Pisarenko relation ?!

Charge carrier concentration

Pisarenko curve: S(n,p)

TE generators:

RTG in space

applications

2011, PbTe

waste heat recovery

Mars Rover Curiosity

Thermal Management. Thermoelectric Generator.

Cryogenic cooling of detectors

Power Pot

The Power Pot Portable Electric Generator

by Powerpractical ★★★☆☆ ▼ 7 customer reviews

List Price: \$149.00

Price: \$85.00 & FREE Shipping. Details You Save: \$64.00 (43%)

Only 4 left in stock.

Get it before Christmas. Select delivery options in checkout.

Want it Wednesday, Dec. 9? Order within 19 hrs 19 mins and choose One-Da checkout. Details Sold by Vern LLC and Fulfilled by Amazon. Gift-wrap available.

Size: 2 Quart

· Starts working right away so you don't have to wait longer for your electronics

Compatible with almost anything that charges with a USB for universal use

· Lightweight material makes it great to take on camping trips

B. Wiendlocha

AGH-UST Krakow, Poland

B. Wiendlocha

Motivation: PbTe:Tl

increase of thermopower after TI doping

• Thermoelectric community: 2% Tl doped PbTe

J.P. Heremans et al. Science (2008) increase in thermopower and zT due to "resonant distortion of electronic DOS"

PbTe, fcc rock salt structure

Enhancement of Thermoelectric Efficiency in PbTe by Distortion of the Electronic Density of States

Joseph P. Heremans,^{1,2}* Vladimir Jovovic,¹ Eric S. Toberer,³ Ali Saramat,³ Ken Kurosaki,⁴ Anek Charoenphakdee,⁴ Shinsuke Yamanaka,⁴ G. Jeffrey Snyder³*

since 2011: my collaboration with JP Heremans' group 3x at OSU as a postdoctoral researcher

Motivation: PbTe:Tl

iH increase of thermopower after TI doping

• Original explanation: "distortion" of DOS due to resonant state – increase in DOS at EF by DOS peak from resonant impurity **A** $S = \frac{\pi^2}{3} \frac{k_B}{q} k_B T \left\{ \frac{d[\ln(\sigma(E))]}{dE} \right\}_{E=E_F} = \frac{\pi^2}{3} \frac{k_B}{q} k_B T \left\{ \frac{1}{n} \frac{dn(E)}{dE} + \frac{1}{\mu} \frac{d\mu(E)}{dE} \right\}_{E=E_F}$

equivalent to increase in m*

$$S = \frac{8\pi^2 k_B^2 T}{3qh^2} m_d^* \left(\frac{\pi}{3n}\right)^{2/3} \quad \mathbf{m}^*$$

• Questioning of RL mechanism of S enhancement:

•Resonance = strong scattering, mobility reduction, bad for TE

•Peak in DOS – localized states, do not take part in transport, or

form a narrow impurity band. Narrow band = small σ .

Two band system with 1 being narrow = no increase in S

$$S = \frac{\sigma_1 S_1 + \sigma_2 S_2}{\sigma_1 + \sigma_2}$$

Goal of my research

1) To investigate from first principle calculations, how RL modifies electronic structure of the studied material

2) To verify whether RL may indeed increase the thermopower in semiconductor (counterarguments of localized states & narrow impurity band)

3) To search for new resonant impurities

"Classical" vs resonant impurity: DOS

- "Classical" impurity: (rigid-band-like) does not change (much) the host band structure, adds carriers (e.g. Na:PbTe)
- **Resonant impurity:** resonant level (RL) or "virtual bound state" (Friedel, 1956), may lead to strong modifications of host bandstructure and resonant scattering (first works on diluted metallic alloys)
- Fingerprint: peak in DOS (diluted concentration ~0.1%)
- Very often in (semi)magnetic semiconductors HgSe:Fe, PbTe:Cr... (PAS, Warsaw!)

Possible effects:

- → strong (resonant) scattering (s-d in Cu-Ni)
- magnetism (semi)magnetic semiconductors
- → charge trap, EF in the gap (In in PbTe)
- → increase of thermopower in low T (HgSe:Fe) or high T (PbTe:Tl, SnTe:In, Bi2Te3:Sn,...)
- → superconductivity (?)

Example of Constantan (Cu-Ni)

Cu-Ni alloy, Ni concentrations 35-50%, one of the **best TE among metallic alloys**, thermocouples

• Photoemission spectra of Cu-Ni alloy - does not follow the rigid band model

PHYSICAL REVIEW B

VOLUME 2, NUMBER 6 15 SEPTEMB

Photoemission and Optical Studies of Cu-Ni Alloys. I. Cu-Rich Alloys*

FIG. 10. Comparison of EDCs for Cu, 77% Cu. The curves are normalized to their respective yields. The energy position of structure from the Cu d states ($E_i < -2$ eV) remains constant; the buildup of structure at -1.0 eV is due to Ni d electrons in virtual-bound-type states. (expected shift in EF)

described in ~.70 using KKR-CPA papers by Butler, Stocks, Gyorffy, Ehrenreich, Faulkner,...

resonant state (virtual bound state) is formedPeak from the rapid change of the phase shift

Example of Constantan (Cu-Ni)

Cu-Ni alloy, Ni concentrations 35-50%, one of the **best TE among metallic alloys**, thermocouples

• Ni Resonant level from KKR-CPA

"Classical" vs resonant impurity: bands

AGH Bands: disordered system - no Bloch states - E(k) not defined (in general)

Bloch spectral functions :

"Classical" vs resonant impurity: bands

AGH Bands: disordered system - no Bloch states – E(k) not defined (in general)

Bloch spectral functions :

AGH-UST Krakow, Poland

Example of Constantan (Cu-Ni)

Cu-Ni alloy, Ni concentrations 35-50%, one of the **best TE among metallic alloys**, thermocouples

• Ni Resonant level from KKR-CPA

Example of Constantan (Cu-Ni)

how to deal with conductivity in such a disordered system?

Problem with the Boltzmann approach: $\sigma(\mathscr{E}) = e^2 \sum \int \frac{d\mathbf{k}}{4\pi^3} \tau_n(\mathbf{k}) \mathbf{v}_n(\mathbf{k}) \otimes \mathbf{v}_n(\mathbf{k}) \delta(\mathscr{E} - \mathscr{E}_n(\mathbf{k}))$ no band center – how to calculate velocity (gradient of E(k))

In a case of a strongly scattering system (resonant levels):

Kubo-Greenwood formalism in KKR-CPA

$$\sigma_{\mu\nu} = \frac{\hbar}{\pi N\Omega} \operatorname{Tr} \langle \hat{j}_{\mu} \Im G^{+}(E_{\mathrm{F}}) \, \hat{j}_{\nu} \Im G^{+}(E_{\mathrm{F}}) \rangle_{c}$$

- This way you may compute $\sigma(E)$ function at
- T = 0 K with no external parameters.
- $1/\sigma(E_F)$ is the residual resistivity
- Then we may compute the thermopower:

$$\sigma = L^{(0)}, \quad S = -\frac{1}{eT} \frac{L^{(1)}}{L^{(0)}}$$
$$L^{(\alpha)} = \int dE \left(-\frac{\partial f}{\partial E}\right) (E - \mu_c)^{\alpha} \sigma(E)$$

Cu-Ni alloy & resonances

- transport properties dominated by the strong scattering on the resonance $ne^2 \tau$

$$\sigma(E) \propto 1/n(E) \quad \sigma \propto \frac{ne}{m}$$

• very good agreement of the computed thermopower with experiment, even though phonons are neglected ($\tau_{ph} >> \tau_e$) ($1/\tau = 1/\tau_{ph} + 1/\tau_e = 1/\tau_e$)

100

200

T (K)

-10

-20

 $(\underline{y}^{-30})^{-30}$ $(\underline{y}^{-40})^{-50}$

-60

-70

-80

0

→Strongly smeared band structure due to presence of RL
 →KKR-CPA + Kubo formalism works very well for metallic alloys with resonant states

→Large thermopower due to the strong dependence of the relaxation time on energy

=> But this is a concentrated alloy (30-50 % of "dopant") May we apply similar approach to semiconductors (with max. 1-2% of dopants?)

PbTe:Tl vs PbTe:Na – density of states

PbTe:Tl vs PbTe:Na – density of states

Larger dopant concentration – RL peak broadens & forms a "DOS hump"

Effect of TI = increase of DOS from redistribution of electronic states, transferred from lower-lying parts

Important: in 2% TI-doped PbTe (most likely) carrier concentration is modified by

Te vacancies, taken into account in our studies

AGH

→Non-Lorentzian BSF with a shoulder→Strong band blurring

 $L(E) = \frac{2}{\pi} \frac{\frac{1}{2}\Gamma}{(E - E_0)^2 + (\frac{1}{2}\Gamma)^2}$ \hbar $\tau =$ $\overline{\Gamma}$

AGH spectral functions & life time

weak scattering from Na

strong reduction of the life time

2-band system: $S = \frac{\sigma_1 S_1 + \sigma_2 S_2}{\sigma_1 + \sigma_2}$

No enhancement in S if $\sigma_1 << \sigma_2$

Spectral functions are able to investigate this problem: counter-example of PbTe:Titanium, where an impurity band is formed – see B. Wiendlocha, APL 2014

Transport function & residual resistivity PbTe:Tl vs Na

conductivity calculated at T = 0 K (Kubo formalism), takes into account scattering on impurities and RL

Transport function & residual resistivity PbTe:Tl vs Na

residual resistivity: comparison with experiment

AGH

independent proof of resonant level

x Tl	y Vac	p	$ ho_0^{ m calc}$	$ ho_0^{ m expt}$
(%)	(%)	(cm^{-3})	$(\mathrm{m}\Omega\mathrm{cm})$	$({ m m}\Omega{ m cm})$
2.0	0.00	$3.0\cdot10^{20}$	0.49	
2.0	0.66	$1.0\cdot 10^{20}$	0.85	$\sim 1 \; [11]$
2.0	0.83	$5.0\cdot10^{19}$	1.37	
1.6	0.49	$9.1\cdot 10^{19}$	0.89	0.70 ± 0.10 [64]
1.4	0.35	$1.0\cdot 10^{20}$	0.80	$0.90 \pm 0.10 \; [12, 71]$
1.3	0.31	$1.0\cdot 10^{20}$	0.81	0.80 ± 0.15 [71]
1.1	0.24	$9.2\cdot10^{19}$	0.83	0.77 - 0.95 [34, 71]
x Tl	$y \mathrm{S}$			
2.0	8.0	$3.0\cdot10^{20}$	0.54	
x Na				
1.0		$1.5\cdot 10^{20}$	0.025	0.034 [72]

- → relatively good agreement
- independent proof for the existence of resonant state =

30x difference in $\rho\,$ between Na and TI doping

 \rightarrow support for the self-compensation model (ρ would be too small)

Thermopower calculations & comparison with

experiment – PbTe:Tl vs Na

→ **Confirmation** of the relative increase of *S* between TI and Na doping

Thermopower calculations & comparison with

experiment – PbTe:Tl vs Na

→ Systematic overestimation of S comparing to experiment

However, this is a systematic error, present in both cases, so it does not affect the conclusion on a relative increase of the thermopower due to resonant state

B. Wiendlocha

#1 summary: PbTe:Tl

AGH Resonant level may increase thermopower of semiconductors

• "Delocalized" resonant level does not form an impurity band (in PbTe:Tl) (important counter-example of PbTe:Titanium, where an impurity band is

formed – see B. Wiendlocha, APL 2014)

- Transfer of electronic states towards the valence band edge increase in the number of carriers thermopower enhancement
- Comparison of PbTe:Tl with PbTe:Na enhancement of *S* confirmed quantitatively, in spite of the stronger scattering on RL
- independent evidence of RL analysis of the residual resistivity

PHYSICAL REVIEW B 97, 205203 (2018)

Thermopower of thermoelectric materials with resonant levels: PbTe:Tl versus PbTe:Na and $Cu_{1-x}Ni_x$

Bartlomiej Wiendlocha*

Faculty of Physics and Applied Computer Science, AGH University of Science and Technology, Aleja Mickiewicza 30, 30-059 Krakow, Poland

(Received 16 February 2018; published 9 May 2018)

PHYSICAL REVIEW B 88, 205205 (2013)

Fermi surface and electron dispersion of PbTe doped with resonant Tl impurity from KKR-CPA calculations

Bartlomiej Wiendlocha*

Faculty of Physics and Applied Computer Science, AGH University of Science and Technology, Al. Mickiewicza 30, 30-059 Krakow, Poland (Received 14 July 2013; revised manuscript received 24 September 2013; published 13 November 2013)

APPLIED PHYSICS LETTERS 105, 133901 (2014)

Localization and magnetism of the resonant impurity states in Ti doped PbTe

Bartlomiej Wiendlocha^{a)}

Faculty of Physics and Applied Computer Science, AGH University of Science and Technology, Al. Mickiewicza 30, Krakow 30-059, Poland and Department of Mechanical and Aerospace Engineering, The Ohio State University, Columbus, Ohio 43210, USA

#2: RL as a novel doping mechanism – Bismuth + In, Ga, Sn

Different aspect of RL – novel doping mechanism (?) in Bi:In

Energy & Environmental Science

PAPER

View Article Online View Journal | View Issue

P-type doping of elemental bismuth with indium, gallium and tin: a novel doping mechanism in solids[†]

Cite this: *Energy Environ. Sci.,* 2015, **8**, 2027

Hyungyu Jin,*^a Bartlomiej Wiendlocha*^{ab} and Joseph P. Heremans*^{acd}

Hyungyu Jin¹, Bartlomiej Wiendlocha^{1,3}, Joseph P. Heremans^{1,2}

- 1. Department of Mechanical Engineering
- 2. Department of Physics, The Ohio State University
- 3. AGH University of Science and Technology, Krakow, Poland

Ashcroft & Mermin, "Solid State Physics"

Single crystals of Bi:In - sample preparation

Bi as a starting point to optimize Bi-Sb alloy (best TE for cryogenic applications): Bi1-xSbx ($zT \sim 0.5$ @ T < 200K)

- Pure Bi (5N), and 0.09%, 0.4% indium doped single crystalline Bi
 - Grown by modified horizontal Bridgman method
- Samples were cleaved along trigonal plane
- XRD measurements to detect single crystal peaks

Indium is an acceptor in bismuth

Sample	(10^{17}cm-3)	(10^{17}cm-3)	(10^{17}cm-3)
0.09% In	0.74	3.2	3.94
0.4% In	0.58	6.5	7.08

Assuming rigid band model

11.5

21.9

12.09

0.4% In

 $\Delta \left(\frac{1}{B}\right) = \frac{2\pi e}{hc} \frac{1}{A_{\rm F}}$

pure Bi

Ρ

 $(10^{17} \text{cm}-3)$

2.93

3.88

7.69

How come indium is an acceptor in bismuth?

B. Wiendlocha

Doping via deep RL

- Hyperdeep defect state (HDS) deprives of two electrons from the main valence block! (including 1 from Bi)
- Deep RL as a source of p-type doping
- Near EF "local" rigid band

B. Wiendlocha

Charge density distribution

Indium is both an acceptor (via deep RL) and "neutral" impurity (3 valence electrons)

+1.73e-03

+2.08e-02

+2.50e-01

Bi(2)

+1.00e-06

+1.20e-05

+1.44e-04

Bi(2)

Revisit Bi:Sn

- Similar effect (theory and experiment) for Bi:Ga (isoelectronic)
- Sn has been known as a classical monovalent acceptor in Bi since 1960.
- Here, we show that Sn is not a simple acceptor impurity!

- Similar behavior with In and Ga in Bi
- Doping through HDS, but here Sn is not neutral (4 valence e)

#2 summary: Bi:In

- Indium is an **isovalent acceptor** in bismuth
 - More Indium, higher hole concentration
- We suggest doping through formation of a hyperdeep RL as a new doping mechanism
- Allows to avoid an ionized impurity scattering
- Mechanism more general similar for Sn and Ga in Bi
- Indium introduces neutral impurity scattering over wide temperature range
 - Enhanced $S \rightarrow zT^{\uparrow}$

#3: search for new resonant impurities in thermoelectrics

300

→ Identification of RL on Sn in As_2Te_3

An Sn-induced resonant level in β -As₂Te₃

Bartlomiej Wiendlocha, 🛑 *^a Jean-Baptiste Vaney,^b Christophe Candolfi, ២^b Anne Dauscher,^b Bertrand Lenoir^b and Janusz Tobola 🝺^a

→ theoretical predictions of RLs (Sn, Al, Ga) for Bi₂Se₃, Bi₂Te₂Se and Bi₂Te₃

 $\begin{array}{l} \mbox{Journal of ELECTRONIC MATERIALS, Vol. 45, No. 7, 2016} \\ DOI: 10.1007/s11664-016-4502-9 \\ \hline C \ 2016 \ The \ Author(s). \ This \ article \ is \ published \ with \ open \ access \ at \ Springerlink.com \end{array}$

Resonant Levels, Vacancies, and Doping in Bi_2Te_3 , Bi_2Te_2Se , and Bi_2Se_3 Tetradymites

BARTLOMIEJ WIENDLOCHA^{1,2}

1.—Faculty of Physics and Applied Computer Science, AGH University of Science and Technology, Aleja A. Mickiewicza 30, 30-059 Kraków, Poland. 2.—e-mail: wiendlocha@fis.agh.edu.pl

→ Ambiguous behavior of Ag in Mg_2Sn

(RL on Sn site, rigid-band on Mg site)

JOURNAL OF APPLIED PHYSICS 116, 153706 (2014)

Electronic structure and thermoelectric properties of p-type Ag-doped Mg_2Sn and $Mg_2Sn_{1-x}Si_x$ (x = 0.05, 0.1)

Sunphil Kim,¹ Bartlomiej Wiendlocha,^{1,2,a)} Hyungyu Jin,¹ Janusz Tobola,² and Joseph P. Heremans^{1,3,b)}

¹Department of Mechanical and Aerospace Engineering, The Ohio State University, Columbus, Ohio 43210, USA ²AGH University of Science and Technology, Faculty of Physics and Applied Computer Science, Al. Mickiewicza 30, 30-059 Krakow, Poland

³Department of Physics, The Ohio State University, Columbus, Ohio 43210, USA

52

Resonant levels are interesting!

- *Delocalized* resonant level may increase thermopower
- Deep resonant level may lead to isovalent doping mechanism
- Calculations are able to predict existence of new RLs

Thank you for your attention!