How to deduce a physical dynamical model from expectation values

Denys Bondar

<u>Collaborators</u>: Renan Cabrera, Andre Campos, Kurt Jacobs, Christopher Jarzynski, Saul Mukamel, Herschel Rabitz, Tamar Seideman, Shanon Vuglar, Dmitry Zhdanov

Funding:

Operational **D**ynamical **M**odeling

theoretical framework to deduce *reduced-dimensional* and *computationally-efficient* models of complex quantum dynamics in *systematic fashion* from *observable* data

Traditional approach

Outline

Introduction to ODM

• Derive Schrodinger equation

- Quantum open system dynamics
 - Quantum reservoirs engineering
- Making Pb look like Au
- Conclusions

ODM: Consistency check

Observations are given by the **Chr** following Ehrenfest theorems (aka, Drude model)

$$\frac{d}{dt} \langle x \rangle = \frac{1}{m} \langle p \rangle,$$
$$\frac{d}{dt} \langle p \rangle = -\langle U'(x) \rangle$$

Note that

$$\left\langle -U'(x)\right\rangle = \left\langle \sum_{k} c_{k} x^{k} \right\rangle = \sum_{k} c_{k} \left\langle x^{k} \right\rangle$$

We want to represent dynamics in Hilbert space

$$\langle \hat{A} \rangle(t) = \langle \Psi(t) | \hat{A} | \Psi(t) \rangle$$

$$[\hat{x},\hat{p}]=i\hbar$$

$$i\hbar |d\Psi(t)/dt\rangle = \hat{H}|\Psi(t)\rangle$$

We get quantum generator of motion

$$\hat{H} = \frac{\hat{p}^2}{2m} + U(\hat{x})$$

190403]

ODM: Quantum Mechanics

Ehrenfest is cooler than Schrödinger!

ODM: Consistency check

Observations are given by the following Ehrenfest theorems

$$\frac{d}{dt} \langle x \rangle = \frac{1}{m} \langle p \rangle,$$
$$\frac{d}{dt} \langle p \rangle = -\langle U'(x) \rangle$$

We want to represent dynamics in Hilbert space

 $\langle \hat{A} \rangle(t) = \langle \Psi(t) | \hat{A} | \Psi(t) \rangle$ $[\hat{x}, \hat{p}] = 0$ $i\hbar | d\Psi(t) / dt \rangle = \hat{H} | \Psi(t) \rangle$

Koopman-von Neumann classical mechanics i.e. Newton mechanics

09, 190403]

ODM: Koopman-von Neumann Classical Mechanics

B. O. Koopman, PNAS USA **17**, 315 (1931) J. von Neumann, Ann. Math. **33**, 587 (1932)

ODM: Reservoir engineering

- Tunneling is a quantum hallmark effect
- Coupling to bath destroys coherence, thereby

suppressing tunneling rates

Not so fast!

Let's use ODM to find environment that enhance tunneling rates

Wigner function for tunneling

The Wigner quasi probability distribution

$$W(x,p) = \int \frac{d\lambda_p}{2\pi} \langle x - \hbar \lambda_p / 2 | \hat{\rho} | x + \hbar \lambda_p / 2 \rangle e^{ip\lambda_p}$$

(similar to density matrix)

(similar to Wigner function)

Particle *feels* potential
barrier
$$\frac{d}{dt}\langle x\rangle = \frac{1}{m}\langle p\rangle,$$
$$\frac{d}{dt}\langle p\rangle = -\langle U'(x)\rangle$$
We want our model to be
Lindbladian, i.e.,
$$\langle \hat{O} \rangle = \text{Tr} [\hat{O}\hat{\rho}(t)].$$
$$\frac{d}{dt}\hat{\rho} = -\frac{i}{\hbar}[\hat{H},\hat{\rho}] + D[\rho],$$
$$D[\hat{\rho}] = \frac{1}{\hbar}\left(\hat{A}\hat{\rho}\hat{A}^{\dagger} - \frac{1}{2}\hat{\rho}\hat{A}^{\dagger}\hat{A} - \frac{1}{2}\hat{A}^{\dagger}\hat{A}\hat{\rho}\right)$$
$$\hat{H} = \hat{p}^{2}/(2m) + U(\hat{x}).$$
$$[\hat{x},\hat{p}] = i\hbar.$$
We get unknown Lindbladian operator
$$A(x,p) = R(x) \exp\left(i\int^{x} \frac{U'(\xi)}{R^{2}(\xi)}d\xi\right)$$
1.02736

Closed system

Designed open system

Coherent free particle evolution

What is the mechanism?

Application 2: Dissipative Traps

Environment can trap a particle

Application 3: Channing mass

Environmental effective mass

Application 4: Pseudo-relativistic dynamics

Application 4: Pseudo-relativistic dynamics

Numerical verification

Is it possible to find external laser field that drives an arbitrary optical response?

[PRL 118, 083201]

Making A looks like B Main idea:

Known

Unknown, but can be estimated

ODM: Tracking control of optical response

Optical responses

Driving laser fields

Conclusions (3D of ODM)

- Derive new physical models
 - QED as open system dynamics
 - engineering environments with "paradoxical" behavior
 - Evolution in topologically nontrivial configuration spaces
- Darn inconsistencies in old models
 - conditions when averages incompatible with formalism
- **D**esign numerical methods
 - propagators for open system dynamics in Wigner phasespace formalism

Bonus: What was before the periodic table?

Story of ħ

- ħ denotes lead in alchemy
- *ħ* denotes Saturn in astrology
- *Ħ* (*ħ*) is character in Maltese alphabet
- ħ is also known as Dirac constant (Dirac may have introduced it)