

Grzegorz Kaminski Flerov Laboratory of Nuclear Reactions, JINR Heavy Ion Laboratory, UW, Warsaw

Grzegorz Kaminski, AGH, 23-rd of March

Joint Institute for Nuclear Research @ Dubna map

Grzegorz Kaminski, AGH, 23-rd of March

JINR Laboratories

Veksler and Baldin Laboratory of High Energy Physics

Bogoliubov Laboratory of Theoretical Physics

Laboratory of Information Technologies

Dzhelepov Laboratory of Nuclear Problems

Laboratory of Radiation Biology

Flerov Laboratory of Nuclear Reactions

Frank Laboratory of Neutron Physics

- Fundamental studies
- Particles study at high energies,
- Nuclear physics and condensed phase physics study,

Innovations,
 development and application of advanced technologies,

University center and education in many different areas of science

Flerov Laboratory of Nuclear Reactions (FLNR)

LABORATORY FOUNDER Georgiy Nikolaevich FLEROV, 1913 – 1990

1940	Discovery of spontaneous fission of uranium
1942-1950	Participation in Russian atomic project
1955	First beams of accelerated heavy ions
1957	Foundation of Laboratory of Nuclear Reactions (Dubna)
1962-1975	Synthesis of new elements: 102, 103, 104, 105 (Dubnium), 106, 107
2012	Element 114 named Flerovium

Accelerators @ FLNR

more information @ http://flerovlab.jinr.ru/flnr/accelerators.html

O Experiments with heavy ion beams of stable and radioactve nuclei:

- Synthesis of superheavy elements
- Study of fusion and fission of atomic niclei
 - ✓ Study of nuclear reaction mechanisms
 - ✓ Study of the structure of exotic nuclei

O Developpment of acceleration techniques

- ✓ cyclotrons
- ✓ ECR ion sources ECR

O Applied study

- Track membrans
- ✓ Nanostructures
- Study of materials properties
 - ✓ Activations analysis

Superheavy and "superlight" research at FLNR, JINR

RI beam production at ACCULINNA

RI beam production at ACCULINNA

✓ Cryogenic tritium target system & correlation measurements

✓ Neutron detection system – stilbene crystals

✓ Optical Time Projection Chamber (OTPC) at ACCULINNA (developed @ University of Warsaw)

Cryogenic tritium target charged particles detectors & neutron detectors, crystal size $80(\emptyset) \times 50 \text{ mm}^3$

Basic scheme of the complex.

FS—filling system; RS—tritium recovery and radiation monitoring system; RC—reaction chamber; TT—tritium target; GSE—gas supply/evacuation line; BS1(2)—hydrogen (deuterium) source; BS3—tritium source; BS4, BS5—traps;
GC, GC1—helium gas-cylinders; D1, D2—pressure gauges; D3, D4—vacuum gauges; FP1, FP2—vacuum pumps (BOC EDWARDS GVSP 30); TMP1, TMP2—turbo pumps (STR-300M); MV—measuring vessel (270 cm3); G1, G2—getters; VE1–VE6 valves (open circles show all other valves); IC1, IC2—ionization chambers; VM1, VM2—vacuum gauges blocking the gas release in ventilation in excess of a given level of the gas-specific volumetric activity.

A.A. Yukhimchuk et al., NIM A513 (2003) 439. <u>Gas:</u> $\phi=25 \text{ mm}, d=3\div6 \text{ mm},$ T=26 K, P=0.92 Atm, $x=3*10^{20} \text{ Atm/cm}^2$ <u>Liquid:</u> $\phi=20 \text{ mm}, d=0.4\div0.8 \text{ mm},$ $w=2x8.4 \mu \text{ stainless steel},$ $x=1.1*10^{21} \text{ Atm/cm}^2$ $I \le 960 \text{ Ci} (3.54*10^{13} \text{ Bq})$

Grzegorz Kaminski, AGH, 23-rd of March

⁸He&¹⁰He: ³H(⁶He,p)⁸He & ³H(⁸He,p)¹⁰He reactions

- Slow protons registered in the backward direction, what limits the maximal ⁸He and ¹⁰He excitation energy to about 14 and 17 MeV.
- ⁹^{8,10}He registered in the forward telescope. Neutrons are registered by 49 DEMON modules.
- It's complete kinematics reconstruction.

¹⁰He: ³H(⁸He,p)¹⁰He

Neutron detection

Neutron detection & Master Thesis

Grzegorz Kaminski, AGH, 23-rd of March

Use of the ACCULINNA fragment separator has Advantages:

• The <u>record intensity</u> of the primary cyclotron beams (5 μ A of ¹¹B);

- Relatively (to in-flight separators) **low beam energies**, that provide a good energy resolution, high reaction cross section partly compensate the low intensities of secondary beams.
- These **<u>beam energies are optimal</u>** for the nuclear structure studies in transfer, charge-exchange reactions;

• <u>Complete kinematics method</u> allows for clean, background-free spectra;

• Correlation studies provides possibilities for spin-parity identification of the resonance states.

ACCULINNA open **possibilities** for wide range of experiments

- correlation experiments
- lifetime measurements
- spectroscopic structure studies
- search for new light exotic nuclei and exotic decays

Use of the **ACCULINNA** fragment separator has its **Disadvantages**:

- It is only efficient with <u>lightest neutron-rich nuclei</u>;
- Does not cope with the request of <u>high intensity clean beams</u> with Z>8;

• We need **more powerful detector rays**, and a bigger experimental area (for TOF);

• <u>Small length of the separator puts limitation on the energy resolution;</u>

Some results @ ACCULINNA

In the recent years using ACCULINNA separator, new results were obtained for such isotopes as: ⁴H[1], ⁵H [2-4], ⁷H [5], ⁶He [10], ⁸He [6], ⁹He [7], ²⁶S [8], ⁶Be [9] and ¹⁰He [6, 11]: [1] S.I. Sidorchuk et al., Phys. Lett. B 594 (2012) 54; [2] A.A. Korsheninnikov et al., Phys. Rev. Lett. 87, 092501 (2001); [3] M.S. Golovkov *et al.*, Phys. Lett. B 566, 70 (2003); [4] M.S. Golovkov et al., Phys. Rev. Lett. 93, 262501 (2004); [5] M.S. Golovkov *et al.*, Phys. Lett. B 588, 163 (2004); [6] M.S. Golovkov *et al.*, Phys. Lett. B 672, 22 (2009); [7] M.S. Golovkov *et al.*, Phys. Rev. C 76, 021605(R) (2007); [8] A.S. Fomichev *et al.*, Int. J. Mod. Phys. E 20, 1491 (2011); [9] A.S. Fomichev et al., Phys. Lett. B 708, 6 (2012); [10] S.I. Sidorchuk *et al.*, Nucl. Phys. A 840, 1 (2010); [11] S.I. Sidorchuk *et al.*, Phys. Rev. Lett. 108, 202502 (2012).

A new separator ACCULINNA-2 Contract with SIGMA PHI to design and instalation of the ACC-2: 2011 - 2015

Layout of ACCULINNA-2

Grzegorz Kaminski, AGH, 23-rd of March

Characteristics of existing and new in-flight RIB separators (ΔΩ and Δp/p are angular and momentum acceptances, Rp/Δp is the firstorder momentum resolution when 1 mm object size is assumed)

	ACC / ACC-2 FLNR JINR	RIPS / BigRIBS RIKEN	A1900 MSU	FRS / SuperFRS GSI	LISE3 GANIL
ΔΩ, msr	0.9 / 5.8	5.0 / 8.0	8.0	0.32 / 5.0	1.0
∆p/p, %	± 2.5 / ± 3.0	± 3.0 / 6.0	± 5.5	± 2.0 / 5.0	± 5.0
Rp/∆p	1000 / 2000	1500 / 3300	2915	8600 / 3050	2200
Bρ, Tm	3.2 / 3.9	5.76 / 9.0	6.0	18 / 18	3.2 - 4.3
Length, m	21 / 38	27 / 77	35	74 / 140	19(42)
E, AMeV	10÷40 / 6÷60	50÷90 / 350	110÷160	220÷1000/1500	40÷80
Additional RIB Filter	No / RF-kicker	RF-kicker / S-form	S-form & RF- kicker	S-form / Preseparator	Wien Filter

Beams and energies @ ACCULINNA-2

FLNI

... somewhere among other facilities

Grzegorz Kaminski, AGH, 23-rd of March

RIBs from ACCULINNA-2

calculations done with LISE++

	Primary beam		Ra	dioactive Ion Bea	am
lon	Energy, MeV/u	Ion	Energy, MeV/u	Intensity, s ⁻¹ (per 1 pµA)	Purity, %
¹¹ B	32	⁸ He	26	3*10 ⁵	90
¹⁵ N	49	¹¹ Li	37	3*10 ⁴	95
¹¹ B	32	¹⁰ Be	26	1*10 ⁸	90
¹⁵ N	49	¹² Be	38.5	2*10 ⁶	70
¹⁸ 0	48	¹⁴ Be	35	2*10 ⁴	50
22		¹⁷ C	33	3*10 ⁵	40
²² Ne	44	¹⁸ C	35	4*10 ⁴	30
³⁶ S	64 (U400M upgrade)	²⁴ 0	40	2*10 ²	10 (with RF kicker)
10 _B	39	⁷ Be	26	8*10 ⁷	90
²⁰ Ne	53	¹⁸ Ne	34	2*10 ⁷	40
³² S	52	²⁸ Be	31	2*10 ⁴	5 (with RF kicker)

Layout of ACCULINNA-2

F5

Grzegorz Kaminski, AGH, 23-rd of March

The zero angle spectrometer

The zero angle spectrometer

Installation: February 2017, -20 °C outside temperature

November 2017

Grzegorz Kaminski, AGH, 23-rd of March

~ Half of the founds for Zero Degree spectrometer was supported by from Polish grants at JINR

RF kicker: started in 2016, installation in the middle of 2018

- The frequency range 14,5 20 MHz is the best compromise in term of dimensions and RF power
- We consider some margin on the RF power and a 15 Kwatts amplifier.
- Reducing the copper cavity diameter to 1000 mm and the coaxial line diameter to 100 mm gives a RF power of 12 Kwatts which is still below 15 Kwatts.

14,5 - 20
120
70
120 min
700
1200 max
120 max
1830
990
1200
10 000
8 500
0,66

PARAMETERS AND CALCULATION RESULTS

Setup layout & Today status

Beam optics test and first radioactive ion beams in March, 2017 ¹⁵N(49.7 AMeV) +⁹Be(2 mm), @ 1 pnA (7enA)

Grzegorz Kaminski, AGH, 23-rd of March

Goals of the test
in March 2017:- ¹⁵N profile at F3 depending on F1 diaph. (Ø 25, 12, 7 mm)
- main parameters (I, P, X_Y) of some RIBs at F3, F4, F5

 $(X_1 Y_1 = 2_8 \text{ mm}, \epsilon = 35 \text{ mrad}, \Delta p/p = 2.5\%, W = 1 \text{ mm})$

Grzegorz Kaminski, AGH, 23-rd of March

RIBs production rates in {}^{15}N(49.7 \text{ AMeV}) + Be(2 \text{ mm}) reaction F1: I({}^{15}N) = 1 pnA @ 7 mm; F2: \Delta p/p = 2\%, Wedge_Be = 1 mm

RIB	Energy, MeV/nucl.	Intensity, 1/s	
¹⁴ B	37,7	120	
¹² Be	39,4	150	
¹¹ Li	37,0	4	ients 18
⁹ Li	33,1	1100	erin 1 20
⁸ He	35,8	25	Exp in
⁶ He	31,5	2700	

Main parameters (I, P, X_Y) are agree well with estimations First experiments with RIBs could be started in 2017 (I < 0.1 pμA) Experiments with intense primary beam (~ 1 pμA) will be able since 2018

Moving ahead to ⁷H via ¹¹Li or ⁸He 2018 - flagship exp.

Scope of activity of ACCULINNA

Scope of activity for ACCULINNA-2

FLR

Competitive light nuclei RIB program at ACC-2

Plan for the year 2018:

(February) ⁶He+d elastic and inelastic scattering at θ_{lab} ~ 5-80 deg (~20-170 CMdeg)
(February) Beta-delayed alpha decay of ¹¹Be: re-investigation with the use optical-TPC
(March/April) d(⁶He,³He)⁵H invariant mass measurement and first attempt for d(⁸He,³He)⁷H

Beam time schedule for the first half of 2018

	<u>08.12.2017</u>	JANUARY	FEBRUARY	MARCH	APRIL	MAY
1	КОМБАС, 10.01.18 – 29.01.18					
2	Ревизия, 29.02.18-04.02.18					
3	ACC-2, WU 04.02.18-23.02.18					
4	АСС-1, ЛРБ 25.02.18-27.02.18					
5	POCKOCMOC, 01.03.18-15.03.18					
6	АСС-2, сект. 6, 17.03.18-15.04.18					
7	Переход на НЭ 15.04.18-29.04.18					

- 1. КОМБАС, 10 января 29 января 2018, 11В 36А MeV, 1 еµА.
- 2. Ревизия каналов. 29 января 04 февраля 2018.
- 3. ACCULINNA-1(?), эксперимент (Варшавский ун-т), 4 февраля 23 февраля 2018, 11B, 32S(?), 36A MeV.
- 4. ACCULINNA-1, эксперимент (ЛРБ), 25 февраля 27 февраля 2018, 328?,11В.
- 5. РОСКОСМОС, 01 марта 15 марта 2018.
- 6. ACCULINNA-2, эксперимент (сектор 6 ЛЯР), 17 марта 15 апреля 2018, 11В, 36А MeV.
- 7. Переход на низкие энергии. 15 апреля 29 апреля 2018.

Moving ahead to the flagship experiment ⁷H

Primary beam diagnostics along the line F0-F1 has been partly completed.
 Radiation shell near movable gate at F3 was done; at F1-F2 area – 2018.
 All communications at F3-F5 (electricity, water, air condition, reaction chamber etc.) were fully completed.

Grzegorz Kaminski, AGH, 23-rd of March

Primary beam diagnostics along the line F0-F1: Faraday Cups & Al_2O_3

¹⁵N primary beam profile near production target at F1 measured by luminophor (~ 7 mm in diameter).
Simplicity vs. disadvantages (I ~ 1÷50 enA, temporary data).

Secondary Electron Emission Crids with POLAND electronics (since 2018)

different ranges settings by R_i

Peter Forck, JUAS Archamps

 \Rightarrow very large dynamic range up to 10⁶.

Radiation shell in the area of movable gate was significantly reinforced: a) column 2x2 m; b) top of the gate ++> overlap with a wall (August 2017)

F3-F5 area was fully completed by communications, equipment and electronics

First experiment at ACCULINNA-2 was performed in December 2017 with ¹⁵N primary beam (E~49
AMeV & I~0.1 pμA on the production target, Be 2 mm)45

Plan on 2018: d(⁶He,³He)⁵H as a tool for the main run d(⁸He,³He)⁷H
 * cross section values for the 1p and 1n transfer reactions in a wide θ_{CM}
 ** improvement in missing mass measurements via novel telescopes

⁵*H* (left) and ⁵*He* (right) energy spectra depending on ³*He-t* coincidences 46

Experimental program in 2017 was a little bit modified: ⁶He+*d* (elastic and inelastic scattering in a wide θ_{CM}) instead of *d*(⁶He,³He)⁵H Motivation: pure information about OP, more simple run, short expositions

ToF

SOX I

Hunt for ⁷H and search for the *4n* radioactivity in the *d*(¹¹Li,⁶Li)⁷H reaction

* I(¹¹Li @ 30 AMeV) ~ 2x10⁴ pps ==> ~ 100 ⁷H events/day (missing mass)
 ** Decay energy will be measured with around 100 keV resolution,
 ~ 3 events/day (⁶Li-t-n coincidences)

Plan on 2019:

²⁶S in the reaction $p({}^{28}S,t){}^{26}S: I({}^{28}S) \sim 10^3 pps, P \sim 25\%, E \sim 38 MeV/A,$ 1 mm liquid H₂, $\sigma \sim 200 \mu b/sr => \sim 10 \text{ events } {}^{26}S \text{ per week}$

- ACCULINNA-2 fragment separator commissioned in 2017 is now ready for firstday experiments.
- The intensities obtained in the fragmentation reaction ¹⁵N (49.7 AMeV) + ⁹Be for the RIBs of ¹⁴B, ¹²Be, ^{9,11}Li, ^{6,8}He were on average 20-25 times higher in comparison with the values for old facility.
- The first-priority experimental program with RIBs is focused on ⁶He+d scattering, beta-delayed exotic decays of ¹¹Be and ^{5,7}H study.
- Further experiments (with RF-kicker and zero angle spectrometer) will be aimed on 26 S observation in (*p*,*t*) reaction with 28 S.

Grzegorz Kaminski, AGH, 23-rd of March

Optical Time Projection Chamber (OTPC)

Idea of study: Prof. Marek Pfützner, UW

Idea of detector: Prof. Wojciech Dominik, UW

Experimental tool - Optical Time Projection Chamber

Optical Time Projection Chamber (OTPC) - A new type of modern ionization chamber with an optical readout. Invented at the University of Warsaw by W. Dominik

Study of β -delayed charged particle emission from ²⁷S and ²⁶P

 32 S @ 50 MeV/u + 9 Be \rightarrow ACCULINNA \rightarrow 27 S

L. Janiak, N Sokolowska et al., PRC 95 (2017) 034315

Data acquisition

Study of β -delayed charged particle emission from ²⁷S and ²⁶P

L. Janiak, N Sokolowska et al., PRC 95 (2017) 034315, N Sokołowska Master Thesis, AGH, Krakow 2016

In 2018/2019 new measurments of β - delayed particle emission from ²⁷S @ ACCULINNA-2 are planned \rightarrow much better statistic of two orders of magnitude is expected (we plane tu purify the beam with RF-kfcker)

OTPC collaboration

University of Warsaw

- W. Dominik
- A. Korgul
- A. Ciemny
- L. Janiak
- C. Mazzochi
- K. Miernik
- S. Mianowski
- M. Pfutzner
- M. Pomorski
- N. Sokołowska
- •A. Kubiela

<u>JINR Dubna</u>

- A.Fomichev
- A.Bezbakh
- G.Kamiński
- S.Krupko

- <u>GSI</u> • I. Mukha
- H. Geissel
- S. Weick

<u>NSCL</u>

- •T. Baumann
- •T. Ginter
- A. Stolz
- S. Liddick

Oak Ridge National Lab.

• K. Rykaczewski

University of Tennessee

- R. Grzywacz
- S. Paulauskas

<u>CERN - ISOLDE</u>

- M. Kowalska
- M. Borge

Possibilities for students at JINR

Możliwości wyjazdu do ZIBJ

- ✓ Letnie praktyki (3 tyg / 6-8 tyg)
- ✓ Prace dyplomowe
- ✓ Wycieczki naukowe
- ✓ Letnie szkoły/konferencje
- ✓ Zatrudnienie *

Pomocne informacje: http://poland.jinr.ru http://ucnew.jinr.ru/en/ http://students.jinr.ru/en

Letnie praktyki dla studentów w ZIBJ – lipiec 2018

Grzegorz Kaminski, AGH, 23-rd of March

Letnie praktyki dla studentów w ZIBJ – lipiec 2018

Termin: 8 - 30 lipca, zapisy – kwiecień 2018

Grzegorz Kaminski, AGH, 23-rd of March

Letnie praktyki dla studentów w ZIBJ – lipiec 2018

http://ucnew.jinr.ru/en/2-stage-2018

Uczestnik praktyki pokrywa:

- koszt przejazdu z Moskwy do miejsca zamieszkania w Polsce (około 500 PLN),

- koszt dwukrotnej wizy tranzytowej przez Białoruś (15 Euro – opłata za wydanie wizy, plus opłata około

150 PLN za pośrednictwo w załatwieniu wizy) w przypadku podróży pociągiem

- koszt ubezpieczenia KL i NNW na okres podróży i pobytu na praktyce (około 70 PLN).

Natomiast ZIBJ pokrywa pozostałe koszt

- zakwaterowania w pokojach 3 lub 4 osobowych w hotelu instytutowym lub w domu studenckim,
 programu turystyczno rekreacyjnego,
- transportu z Moskwy do Dubnej w dniu przyjazdu i z Dubnej do Moskwy w dniu powrotu do Polski,
- biletu na przelot samolotem lub dojazd pociągiem w wagonie sypialnym II klasy z Warszawy do

Moskwy (łącznie do ~150 USD)

- dietę w wysokości 22 USD dziennie wypłaconą w rublach,

 bezpłatne śniadania w restauracji hotelowej i 3 USD dziennie stanowiące tzw. fundusz operacyjny z którego będą pokrywane koszty biletów wstępu do muzeów, opłaty za przewodników, opłaty za przejazd metrem w Moskwie itp.. (w przypadku nie uczestniczenia w wycieczkach nie wydane kwoty nie będą wypłacane uczestnikowi praktyki).

W celu zgłoszenia chęci uczestnictwa należy przesłać zeskanowane dokumenty na adres

zawodny@amu.edu.pl

Letnie praktyki dla studentów w ZIBJ – 6-8 tyg

🛛 🔏 students.jinr.ru	💟 🏠 🔍 Search
Summer Stude	nt Program
HOME FIELDS OF	RESEARCH PROJECTS ARCHIVE
	STUDENTS FEEDBACKS
	Апгелина Ангелина Ангелина МГУ им. М.В.Ломопосова
JI	Summer 2018 I'd like to express my gratitude to the whole staff members of the Raman spectroscopy sector and special thanks to my supervisor Dr Grigory more
What is JINR Summer St	Judent Program? Termin praktyki do uzgodnienia w
	okresie lipiec – październik
Applications admission ends 2018-03-31 23:00	Purpose and Implementation of the Program
Days left: 9	About the Program Financial Support Participant's Final Report FAQ
Register to submit your application	Program Purpose
SUMMER PROGRAM - 2018	The main purpose of the Summer Student Program at JINR is to attract graduate students from the JINR Member States on a competitive basis to the Institute scientific groups that implement the main JINR research projects.
Contacts >	Program Dates
Sponsors >	The Summer Student Program at JINR will be organized in the form of student research projects in the
http://students.	jinr.ru/en

Grzegorz Kaminski, AGH, 23-rd of March

Współpraca ze studentami 2016-2018

Prace magisterskie:

Natalia Sokołowska, AGH, Kraków, praca magisterska p.t: **Badanie** przemiany $\beta^{+26}P$ detektora dryfowego z odczytem optycznym. Obrona pracy odbyła się w czerwcu 2016 r.

Aleksandra Świercz, AGH, Kraków, praca magisterska p.t.: **Badanie struktury lekkich egzotycznych jąder na separatorze ACCULINNA-2**. Temat zatwierdzony do realizacji w roku akademickim 2017/2018.

Magdalena Kaja, Politechnika Warszawska, praca magisterska p.t.: **Badanie** właściwości procesów transportu ładunku w mieszankach gazowych stosowanych w detektorach z projekcją czasową / Study of charge transport properties of gas mixtures for time projection chambers.

Temat zatwierdzony do realizacji w roku akademickim 2017/2018.

Praca magisterska realizowana we wspołpracy ZIBJ, Dubna- LIP Coimbra,

Praktyki indywidualne, staże, eksperymenty

Oprócz letnich praktyk, jest możliwość odbycia praktyk indywidualnych, staży w ramach realizacji prac magisterskich, doktorskich, udział w eksperymentach. Pełne lub częściowe finansowanie na wyjazd uzyskuje się z programu Bogolubowa-Infelda. Warunki ustala się indywidualnie, w zależności od celu wyjazdu i długosci pobytu: głównie są to wyjazdy od tygodnia do dwóch miesięcy

Wyjazdy na okres od 3 miesięcy i więcej

Informacje o formalnościach zwiazanych z wyjazdami na okres dluższy niż 3miesiące można znaleźć na stronie: http://poland.jinr.ru informacje dla przyjeżdżających Wyjazd organizowany jest na zasadzie zatrudnienia na czas określony, od 3 miesięcy do 2-3 lat z możliwością przedłużenia kontraktu

Więcej informacji : Władysław Chmielowski, email: wchmiel@jinr.ru Grzegorz Kaminski: gkaminski@slcj.uw.edu.pl

