"Thermospin effects in magnetic multilayers"

M.R. Ibarra

www.unizar.es/ibarra/

Institute of Nanosciencie of Aragón Laboratory of Advanced Microscopies Condensed Matter Physics Department

Instituto Universitario de Investigación en Nanociencia de Aragón Universidad Zaragoza

AGH

Prof. Manuel Ricardo Ibarra Garcia

doktor honoris causa Akademii Górniczo-Hutniczej im. Stanisława Staszica w Krakowie

Outline

- The concept of spin currrents
- The thermoelectric conversion
- Introduction to Thermospin effects
- SSE effects in [Fe₃O₄/Pt]_n multilayers
- Spin Peltier effect in [Fe₃O₄/Pt]_n multilayers
- Thermoelectric power: thermopiles
- Conclusions

The concept of spin current

Charge and spin currents

Pure Spin Currents

Non-magnetic Metal

Magnetic Insulator

Net electron spin flow

Magnon flow

Spin Hall effect (SHE)

Interconversion of charge – spin currents in materials with high spin orbit coupling (high Z) (Dyakanov & Parel 1971, Hirch 1999)

 (J_c) Charge \implies (J_s) Spin

Inverse Spin Hall effect (ISHE)

Interconversion of spin currents – charge currents in non-magnetic metals with high spin orbit coupling (high Z)

Saitoh, E., Ueda, M., Miyajima, H., & Tatara, G. (2006). Conversion of spin current into charge current at room temperature: Inverse spin-Hall effect. *Applied Physics Letters*, 88(2006), 1–4.

Thermoelectric conversion

Thermoelectric effects

Would it be posible thermoelectric effect due to spin?

Js

 ∇T

Spin Peltier Effect (SPE)

 ∇T

← ← J_S

Heat vs. Electricity

	To get Electricity	To get Heat
Charge	Seebeck effect	Peltier effect
Spin	Spin Seebeck effect Uchida 2008	Spin Peltier effect Flipse 2014 Daimon 2016

Thermospin concept

Spin Seebeck effect effect: Spin current generation by heat

Longitudinal spin Seebeck effect (LSSE)

K. Uchida *et al.*, Appl. Phys. Lett. **97**, 172505 (2010).

Spin Seebeck basic principles

$$I_S = -G_S \frac{k_B}{\hbar} (T_F - T_N)$$

$$\vec{E}_{ISHE} = \frac{\theta_{SH}\rho}{A} \left(\frac{2e}{\hbar}\right) \vec{J}_S \times \vec{\sigma}$$

- Spin current proportional to applied thermal gradient
- Injected spin current converted in electric voltage by the inverse spin Hall effect

- J. Xiao et al. Phys. Rev. B 81, 214418
- H. Adachi et al. Phys. Rev. B 83, 094410,& Rep. Prog. Phys. 76, (2013) 036501

SPIN CURRENT AT THE INTERFACES

Magnon emission associated with spin accumulation at the metal-ferromagnet interface (Takahasi et al ICM 2009)

Spin angular momentum transfer at the interface: Magnon and elecron spin current interconversion (Steven et al. PRB 86 (2012) 214424)

Spin Seebeck effect in magnetic multilayers

SSE in [F/N]_n multilayers

Combined PLD & Sputtering

Atomic resolution chemical mapping of the interfaces

SSE vs number of Fe_3O_4/Pt bilayers

SSE voltage enhancement with incresing number of Fe₃O₄/Pt bilayers

Ramos et al. Phys. Rev. B 92, 220407(Rap. Comm.) (2015)

SSE dependence on Fe₃O₄ thickness

Dependence of SSE versus metal/insulator interlayer

Spin current across the multilayer must be considered

Relevance of the Pt interlayer thickness

Optimized configuration

Largest SSE voltage measured in a thin film based structure!!

*V*_{ML} ≈ 28 μV/ Κ !!

Mechanism of LSSE enhancement in multilayer systems

Essence of LSSE enhancement:

Boundary conditions for spin currents flowing normal to P/F interfaces (i) spin currents must disappear at the top and bottom surfaces (ii) spin currents are continuous at the interfaces

Qualitative agreement with experimental results

Ramos et al. Phys. Rev. B 92, 220407(Rap. Comm.) (2015)

Spin Peltier effect in magnetic multilayers

Thermo-spin effects

(Ilustration from Graham Jones)

K. Uchida et al. Phys. Rev.B 95, 184437 (2017)

Spin peltier effect

K. Uchida et al. Phys. Rev.B 95, 184437 (2017)

Strong enhancement of the spin peltier effect in multiple bilayers

Spin Seebeck devices: thermopiles

Spin Seebeck device

(IMR, Tohoku Univ. / NEC / ASRC, JAEA/Zaragoza)

Conventional charge thermoelectric device:

Many thermocouples necessary \rightarrow High cost, difficulty in integration

T-gradient over centimeter scale needed →Thin film device difficult Spin-Seebeck thermoelectric device

Many thermocouples unnecessary →Low cost, ultimate integration

T-gradient over nanometer scale is sufficient →Thin film device possible

Wide area, low cost thermoelectric devices

SSE thermopiles

Multilayer

Bilayer

TP2

Conclusions

Spin current conversion at the interfaces F/N gives rise to an strong enhancement of the thermospin effects in multiple bilayers and constitutes an excellent play ground for the study of new physical phenomena and promising for devices application

K. Uchida et al. review Proceedings of the IEEE 104, 1499 (2016)

Monographic issue in Journal Phys D: Applied Physics on CALORITRONICS to appear soon

Enhanced thermo-spin effects in ironoxide/metal multilayers

R Ramos¹, I. Lucas^{2,3,4}, P. A. Algarabel^{4,5}, L. Morellón^{2,3,4}, K. Uchida^{6,7,8}, E. Saitoh^{1,8,9,10} and M. R. Ibarra^{2,3,4,11}

Strategic Japanese-Spanish Cooperative Research Program Nanotechnologies and new materials for environmental challenges

Development of thin-film thermoelectric SSE based devices

LABORATORIO DE MICROSCOPIAS AVANZADAS

INSTITUTO UNIVERSITARIO DE INVESTIGACIÓN EN NANOCIENCIA DE ARAGÓN

THANK YOU FOR YOUR ATENTION

http://ina.unizar.es ibarra@unizar.es