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Physical properties of high-entropy alloys

Janez Dolinšek
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Traditional metallic alloy systems

- based on one principal chemical element as the matrix,

- other elements incorporated in small amounts for property/processing
enhancement,

- about 30 practical alloy systems developed (Fe (steels), Al, Cu, Ti, Mg, Ni-based).
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Alloys with more than one principal element

Intermetallic compounds (structurally simple or complex - CMAs)

Gd3Au13Sn4

Bulk amorphous alloys (metallic glasses, Pd, Ln, Zr, Fe, Mg-based)

Zr69.5Cu12Ni11Al7.5 XRD pattern
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Quasicrystals

icosahedral Mg-Zn-Dy decagonal Al-Ni-Codiffraction pattern

“forbidden” symmetries: 5-, 8-, 
10-, 12-fold axes

Shechtman et al., Phys. Rev.
Lett. 53, 1951 (1984)

Alloys with more than one principal element
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High-Entropy Alloys (HEAs)

- new concept of alloy design with multiple principal elements in near-equimolar ratios,

- high entropy of mixing can stabilize disordered solid-solution phases with simple
structures (bcc, fcc, hcp) and small unit cells,

- topologically ordered lattice with exceedingly high chemical (substitutional) disorder.

HEA: “metallic glass on a simple, ordered lattice”
J.W. Yeh, et al, Adv. Eng. Matter. 6, 299 (2004),
J.W. Yeh, Ann. Chim. Sci. Mat. 31, 633 (2006).

AGH University of Science and Technology - 25th October, 2019                                               J. Dolinšek



6

High-Entropy Alloys (HEAs)

Conditions for the HEA-phase formation:

- high entropy of mixing should be achieved,

- alloy must be composed of 5 or more majority elements in similar concentrations (from 5 
to 35 at. % for each element),

- no element should exceed 50 at. % concentration.

random mixing of ideal gasses random mixing in a solid solution
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HEA phase stabilization

- minimization of Gibbs free energy G = H – TS by the entropic term

- mixing free energy: ΔGmix = ΔHmix – TΔSmix

- mixing (configurational) entropy of an r-element ideal gas  (                        ):
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- equimolar concentrations of elements:

entropy of mixing reaches maximum rnRSmix ln

0 mixH
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HEA phase stabilization

mixing entropy versus the number of elements in equimolar alloys

J.-W. Yeh, Annales De Chimie – Science des Materiaux 31, 633 (2006)
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- five-component mixture (r = 5) with equimolar ratios of the elements:

- high temperature, e.g., T = 2000 K:

energy gain of a few 10 kJ/mol is enough for the entropic stabilization of a disordered solid-
solution phase with a simple structure (bcc, fcc, hcp), in competition with ordered complex
crystalline intermetallic phases

HEA phase stabilization - example

molKJRSmix /4.135ln 

molkJST mix /8.26
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Ideal solutions:

- interactions between every pair of molecular kinds are the same,

ΔHmix = 0

ΔGmix = ‒TΔSmix

- mixing of the elements is completely random,

- solid solution with a simple structure is stabilized by the entropy term and is 
thermodynamically stable down to low temperatures.

HEA phase stability – ideal solid solutions
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Examples of ideal solid solutions: Mixtures of rare-earth elements

the system Gd-Tb-Dy-Ho-Er-Tm-Lu +     Ce
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heavy RE light RE

hcp lattice

Tb-Dy-Ho-Er-Tm

XRD SEM BSE
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- real solid solution (ΔHmix ≠ 0): interactions between different molecular kinds are different,

- low temperatures: the entropy term TΔSmix becomes too small to stabilize a HEA phase,

- sluggish atomic diffusion in multi-component mixtures hinders phase transformations
simple high-T structure quenched down to low-T (metastable),

ΔHmix < 0 : intermetallic phases precipitate at the nm scale,

ΔHmix > 0 : phase separation (dendrites).

HEA phase stability – regular solid solutions

Ta34Nb33Hf8Zr14Ti11  bcc HEA

SEM BSE image at the μm scale
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CoCrFeNiZr0.45 bcc HEA - regular solid solution
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bcc and fcc HEAs:

Ta-Nb-Hf-Zr-Ti-Nb-Mo-V-W

Al-Si-Co-Cr-Cu-Fe-Mn-Ni-Ti 

hexagonal HEAs:

Gd-Tb-Ho-Dy-Er-Tm-Lu-Y

- enhanced mechanical properties (high hardness, solid-solution strengthening)

- refractory materials (stable at high temperatures)

- superconductivity

- magnetic softness

- magnetic nanocomposites

- complex magnetic phase diagrams

Examples of HEA systems
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9 % atomic radius mismatch between the largest (Zr) and the smallest (Ti) element 

larger

smaller

Superconductivity in the Ta-Nb-Zr-Hf-Ti system
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Ta-Nb-Zr-Hf-Ti:



16

Superconductivity in the Ta-Nb-Zr-Hf-Ti system

P. Koželj, et al., Phys. Rev. Lett. 113 (2014) 107001
S. Vrtnik, et al., J. Alloys. Compd. 695 (2017) 3530

Ta-Nb-Zr-Hf-Ti
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electrical resistivity Meissner effect – type II superconductor
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Superconductivity in the Ta-Nb-Zr-Hf-Ti system
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Ta-Nb-Zr-Hf-Ti    specific heat

entire volume superconducting
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Superconductivity in as-cast and thermally annealed Ta-Nb-Zr-Hf-Ti 
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Ta34Nb33Hf8Zr14Ti11 zone melted

Ta20Nb21Hf20Zr20Ti19 7h@2000C

Ta25Nb25Hf26Zr24 1day@1800C

Ta22Nb24Hf21Zr23Ti10 1day@1800C
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Superconductivity in as-cast and thermally annealed Ta-Nb-Zr-Hf-Ti 
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zero-field electrical resistivity

electrical resistivity in magnetic field
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Superconductivity in as-cast and thermally annealed Ta-Nb-Zr-Hf-Ti 
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SC transition temperature – effect
of structural inhomogeneity

all samples are SC in the entire
volumes, regardless of the
composition and inhomogeneity
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Superconductivity in as-cast and thermally annealed Ta-Nb-Zr-Hf-Ti 
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upper critical field
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Soft ferromagnetism in FeCoNiPdCu

Use in: transformers, electromotors, electromagnetic
machinery, magnetocaloric refrigerators

FCNPC: FeCoNiPdCu HEA
NES: non-oriented electrical steel (Fe97Si3)
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Soft ferromagnetism in FeCoNiPdCu

P. Koželj et al., Adv. Eng. Mater. (2019) 1801055 
DOI: 10.1002/adem.201801055

Nanocomposite of FeCoNi
ferromagnetic nanodomains
and CuPd nonmagnetic
„nano-spacers“

exchange averaging of
magnetic anisitropy

perfect magnetic softness
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- investigated system: Ce-Gd-Tb-Dy-Ho-Er-Tm-Lu

- binary mixing enthalpies of any pair of the elements are zero:

Δ𝐻𝑚𝑖𝑥
𝑖𝑗

= 0 Δ𝐻𝑚𝑖𝑥 = 0 Δ𝐺𝑚𝑖𝑥 = −𝑇Δ𝑆𝑚𝑖𝑥

- RE-based hexagonal HEAs are ideal solid solutions;

- atomic radii are very similar lattice distortions small;
- large chemical disorder.

„Metallic glass on a topologically ordered lattice“

Complex magnetism of rare-earth based hexagonal HEAs
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Physical properties of RE-based hexagonal HEAs

- Great chemical similarity of the RE elements electronic 
properties can be predictably tuned with composition;

- Random mixing of RE elements on an undistorted hcp lattice results in 
unprecedented magnetic behavior;

- Complex (H,T) phase diagrams observed in Y-Gd-Tb-Dy-Ho [1] and
Ce-Gd-Tb-Dy-Ho [2].

[1] J. Lužnik, et al., Phys. Rev. B 92 (2015) 224201.
[2] S. Vrtnik et al., J. Alloys Compd. 742 (2018) 877.

helical AFM

spin glass

disordered FM
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Physical properties of Tb-Dy-Ho-Er-Tm hexagonal HEA

AGH University of Science and Technology - 25th October, 2019                                               J. Dolinšek

- single-phase material, macroscopically large grains;
- hcp structure, space group P63/mmc;
- RT lattice parameters: 𝒂 = 3.582 Å and 𝒄 = 5.632 Å, in good agreement with the 
composition-averaged theoretical values ഥ𝒂 = 3.575 Å and ഥ𝒄 = 5.622 Å;
- EDS composition: Tb20.3Dy20.7Ho20.3Er19.7Tm19.0

SEM BSE – channeling contrast
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Magnetic interactions in Tb-Dy-Ho-Er-Tm hexagonal HEA

Probability distributions of:

- atomic magnetic moments 𝑷 𝝁 , 
- exchange interactions 𝑷 𝓙 , 
- magnetocrystalline anisotropy 𝑷 𝑫 ,
- dipolar interactions 𝑷 𝑯𝒅 . 

de Gennes factor (strength of the
exchange interaction between different
atomic pairs)
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dc magnetization of Tb-Dy-Ho-Er-Tm hexagonal HEA

two magnetic phase transitions:

- AFM-like at about 140 K
- FM-like at about 24 K
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ac magnetization of Tb-Dy-Ho-Er-Tm hexagonal HEA

transition at 24 K is frequency-
dependent:

spin freezing transition in a 
magnetically frustrated system

transition at 140 K is frequency-
independent:

thermodynamic phase
transition
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M(H) curves of Tb-Dy-Ho-Er-Tm hexagonal HEA

ASPM: asperomagnet

SPM: speromagnet

SG: spin glass

low-field M(H) types of magnetic order
M(H) dependence changes
at a „critical“ field 𝑯𝒄
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Thermoremanent magnetization time-decay of Tb-Dy-Ho-Er-Tm 
hexagonal HEA

TRM is a measure of “stiffness” of the magnetically frustrated spin system, related to the 

length scale of the site-averaged magnetic moment correlations റ𝑱𝒊 𝟎 ∙ റ𝑱𝒋 𝒓 .

FM correlations: large TRM; AFM correlations: small (or no) TRM



32AGH University of Science and Technology - 25th October, 2019                                               J. Dolinšek

Specific heat of Tb-Dy-Ho-Er-Tm hexagonal HEA

grey-shaded area: 
magnetic specific heat

gradual magnetic ordering over a large temperature interval (200 – 2 K)
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Electrical resistivity of Tb-Dy-Ho-Er-Tm hexagonal HEA
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Magnetoresistance of Tb-Dy-Ho-Er-Tm hexagonal HEA

ANTIFERROMAGNET
Small field

Larger field
Τ𝜟𝝔 𝝔 ∝ 𝑩𝟐

PARAMAGNET,   FERROMAGNET
Small field

Larger field
Τ𝜟𝝔 𝝔 ∝ −𝑩

- magnetoresistance changes qualitatively at 
the critical field 𝑩𝒄;

- „up-down“ hysteresis of the critical field.
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Magnetic ground state of the Tb-Dy-Ho-Er-Tm hexagonal HEA

- asperomagnetic (disordered AFM) at high-T 
(between 140 and 30 K)

- speromagnetic (disordered FM) at low-T (below 25 K)

- must go through a spin glass state in the
temperature range between 30 and 25 K
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High-entropy alloys as novel functional materials

- superconductivity
- temporary (soft) magnets
- nanocomposite materials
- complex magnetic field-temperature phase diagrams
- magnetocalorics
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Origin of the ASPM SG SPM sequence of transitions

J. Jensen, A.R. Mackintosh,
Rare Earth Magnetism
Clarendon Press, Oxford, 1991

band structure effect, related to temperature-induced changes of the Fermi surface
(analogy to pure heavy-RE metals)
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