POLFEL - Polski Laser na Swobodnych Elektronach w Narodowym Centrum Badań Jądrowych

NARODOWE CENTRUM BADAŃ JĄDROWYCH ŚWIERK Krzysztof Kurek

Krzysztof Kurek,

Trochę historii

Prof. Andrzej Sołtan już w 1938 roku zbudował pierwszy w Polsce akcelerator pracujący z wiązka wodoru i jonów deuteru o energii ok. 300 keV

W 1955 roku Prof. Sołtan został nominowany pierwszym dyrektorem naczelnym IBJ. Kontunuował swoje badania w dziedzinie fizyki jądrowej budując konieczne do badań instrumentarium.

Nowa idea struktur przyspieszających rozwinięta w latach 50 przez L. Alvareza została przeniesiona przez A. Sołtana do IBJ gdzie rozwinięto projekt budowy akceleratorów (1956-1970)

10 MeV liniowy akcelerator protonów został nazwany "Andrzej" na cześć prof. Sołtana

Pierwszy reaktor jądrowy EWA

"US built their first reactor in 1942, Poland did 16 years later" from a Polish Radio report

EWA at IBJ

USA zbudowało swój pierwszy reaktor w 1942, Polska zrobiła to 16 lat później...

3/40

Tak mówił spiker Polskiego Radia

General view of proton linear accelerator "Andrzej"

Krzysztof Kurek,

POLFEL, AGH, 8.11.2019

Departament Eksploatacji Obiektów Jądrowych Reactor MARIA, LPD

Departament Fizyki Materiałów

LBM

Departament Badań Podstawowych

Departament Aparatury i Technik Jądrowych

Departament Badań Układów Złożonych CIŚ

Ośrodek Radioizotopów **POLATOM-NCBJ**

jeden z najwiekszych instytutów badawczych w Polsce:

1031 pracowników, 55 prof. & 150 doktorów Studium doktoranckie/Szkoła doktorska:

~45 studentów

Osiągnięcia naukowe:

- ~500 recenzowanych publikacji,
- >10000 cytacji rocznie

5/4th pozycja w Polsce, h> 170

117 projektów

Współpraca naukowa z największymi laboratoriami na świecie (CERN, DESY, Grenoble, JParc, FAIR, Julich, ESS, JINR, T2K).

Zakład Aparatury Jądrowej HITEC

CERN (CMS, LHCb, ALICE, COMPASS, NA61/Shine, GBAR)

Wkład NCBJ:

- CMS muon trigger system
- LHCb "straw tube"
- Linac4 struktury przyspieszające
- GBAR akcelerator elektronów

Krzysztof Kurek,

POLFEL, AGH, 8.11.2019

DESY XFEL

Krzysztof Kurek,

POLFEL, AGH, 8.11.2019

DESY XFEL

Krzysztof Kurek,

POLFEL, AGH, 8.11.2019

Badawczy reaktor jądrowy MARIA

NARODOWE CENTRUM BADAŃ JĄDROWYCH WIERK

- zbudowany w 1974 roku
- modernizowany 1992, 2011, 2017-...
- typu basenowego
- moderowany H₂O, Be
- 30 MW mocy termicznej
- strumień neutronów:
 - \circ termicznych: 4·10¹⁴ n/cm²s
 - szybkich: $2 \cdot 10^{14}$ n/cm²s

Jedno z najlepszych źródeł neutronów!

- Curium
- POLATOM-NCBJ

Radioizotopy dla 400 tys. pacjentów tygodniowo!

Krzysztof Kurek,

POLFEL,

AGH, 8.11.2019

Centrum Informatyczne Świerk

Centrum Informatyczne Świerk

Krzysztof Kurek,

POLFEL, AGH, 8.11.2019

Centrum Informatyczne Świerk

Server type	Capacity [PB]
HP MDS600 (SAS)	0.6
NetApp FAS62x0 (Ethernet, NFS)	1.6
EMC Isilon HD400 (Ethernet, pNFS)	7.0
Seagate OneStore (Infiniband, Lustre)	8.0
Total	17.2

			本語 二 一部に たい 日本 一 一 一 一 一 一 一 一 一 一 一 一 一 一 一 一 一 一
J	Computing power [TF]	RAM [TB]	
	17	7.7	
	200	57.3	-
	300	57.3	
	450	60.2	
	94		
	1061	182.5	

HP MDS600 (S	SAS)	0.6		5. P. In 8		A A BETTY
NetApp FAS62x0 (Eth	ernet, NFS)	1.6		R. MAS		
EMC Isilon HD400 (Eth	ernet, pNFS)	7.0			Carl States	
Seagate OneStore (Infin	iband, Lustre)	8.0	A A A A A A A A A A A A A A A A A A A			
Total		17.2				1 3 × 2 5 1 5 1
Centrum Informatyczne Sw	/ierk					
Server type	# of computers	# of cores CPU	Computing power [TF]	RAM [TB]		
Server type HP-BL685c	# of computers 30	# of cores CPU 1920	Computing power [TF] 17	RAM [TB] 7.7		
Server type HP-BL685c SuperMicro TwinBlade	# of computers 30 448	# of cores CPU 1920 8960	Computing power [TF] 17 200	RAM [TB] 7.7 57.3		
Server type HP-BL685c SuperMicro TwinBlade Bullx B700	# of computers 30 448 448	# of cores CPU 1920 8960 8960	Computing power [TF] 17 200 300	RAM [TB] 7.7 57.3 57.3		
Server type HP-BL685c SuperMicro TwinBlade Bullx B700 Format ODYN 5248T	# of computers 30 448 448 448 450	# of cores CPU 1920 8960 8960 11280	Computing power [TF] 17 200 300 450	RAM [TB] 7.7 57.3 57.3 60.2		
Server type HP-BL685c SuperMicro TwinBlade Bullx B700 Format ODYN 5248T NVidia Tesla K80	# of computers 30 448 448 448 420	# of cores CPU 1920 8960 8960 11280 80	Computing power [TF] 17 200 300 450 94	RAM [TB] 7.7 57.3 60.2		

Krzysztof Kurek,

POLFEL, AGH, 8.11.2019

Komory gorące ¹³¹

POLATOM

• • •

Komory gorace ⁹⁰Y i ¹⁷⁷Lu

Radiofarmaceutyki dopuszczenie do obrotu jako produkty lecznicze

> Certyfikowany system zapewnienia jakości:

ISO: PN-EN ISO 9001:2015-10

Linia produkcyjna roztworów injekcyjnych ¹³¹ J-Hipuran, ¹³¹ J-MIBG

.2019

Ośrodek radioizotopów POLATOM-NCBJ

Eksport do 80 krajów świata ~100% polskiego rynku (z wyjątkiem PET)

17 mln pacjentów

10/40

Krzysztof Kurek,

POLFEL, AGH, 8.11.2019

Zakład Aparatury Jądrowej HITEC

OLFEL, AGH, 8.11.2019 1/40 Krzysztof Kurek,

Zakład Aparatury Jądrowej HITEC

Polski Produkt Przyszłości

OLFEL, AGH, 8.11.2019 1/40

Nowe instrumenty badawcze dla reaktora badawczego Maria Współpraca NCBJ-HZB Berlin

E2	Flat Cone	Diffractometer,
E3	Residual	Stress Analysis Diffractometer
E4	Two-Axis	Diffractometer,
E5	Four-Circle	Diffractometer,
E6	Focusing	Diffractometer.

R2B Hala fizyczna poz.—1,7m Skala 1:50 Propozycja ustawienia E2,E4,E5,E6

AGH, 8.11.2019

POLFEL,

12/40

Krzysztof Kurek,

Unia Europejska Europejski Fundusz Rozwoju Regionalnego

Centrum Projektowania i Syntezy Radfiofarmaceutyków Ukierunkowanych Molekularnie

Cel: Stworzenie nowoczesnej infrastruktury badawczej w obszarze poszukiwania nowych radiofarmaceutyków do diagnostyki i terapii, opartych na aktywnych biologicznie ligandach działających na poziomie komórkowym i molekularnym. Połączenie technik izotopowych z molekularnymi markerami stanu chorobowego umożliwi wcześniejsze wykrywanie schorzeń i wdrożenie odpowiednich procedur terapeutycznych.

Poszerzenie zakresu dostępnych radionuklidów:

¹¹C, ¹³N, ¹⁵O, ¹⁸F, ²²Na, ⁴⁴Sc, ⁴⁷Sc, ⁷⁴As, ⁶⁴Cu, ⁶⁷Cu, ⁶⁷Ga, ⁶⁸Ge, ⁸¹Rb, ⁸²Sr, ⁸⁶Y, ⁸⁹Zr, ^{94m}Tc, ^{99m}Tc, ¹⁰⁹Cd, ¹¹¹In, ¹²³I, ¹²⁴I, ²⁰¹TI, ²¹¹At, ²²⁵Ac,

Nowe techniki obrazowania:

Skanery multimodalne, laboratoria syntezy chemicznej i laboratoria biochemiczne.

Przyspiesza protony i cząstki alfa do energii 30 MeV oraz deuterony do energii 15 MeV

Krzysztof Kurek,

CERAD infrastructure

Krzysztof Kurek,

AGH, 8.11.2019 POLFEL,

Projekt NOMATEN

budowa tzw. Centrum Doskonałości (Center of Excellence) finansowana z grantu

wartość projektu: 108 425 049 zł., w tym wartość dofinansowania dla NCBJ: 89 214 677 zł

Projekt CETRIX

projekt podwójnego akceleratora radiograficznego wraz z laboratorium;

wartość projektu: 28 mln zł., dofinansowaniae: 17,7 mln zł.

FNP MAB Plus oraz z prestiżowego grantu Komisji Europejskiej w ramach Konkursu Teaming;

Krzysztof Kurek,

POLFEL, AGH, 8.11.2019

lacksquaretechnologii."

Unia Europejska

Europejski Fundusz

Nowe źródła światła od zawsze były kamieniami milowymi rozwoju ludzkiej cywilizacji. Ogniska stanowią wyznacznik jej zarania. Świeca symbolizuje początek systematycznego zbierania wiedzy. Żarówka Edisona stała się ikoną nowoczesnej wynalazczości, a laser – symbolem nowych

16/40

Krzysztof Kurek,

POLFEL, AGH, 8.11.2019

- lacksquaretechnologii."
- \bullet
 - Fascynująca fizyka fotonowa \bullet
 - 26 nagród Nobla za badania z użyciem promieniowania synchrotronowego \bullet

Unia Europejska

Europejski Fundusz

Nowe źródła światła od zawsze były kamieniami milowymi rozwoju ludzkiej cywilizacji. Ogniska stanowią wyznacznik jej zarania. Świeca symbolizuje początek systematycznego zbierania wiedzy. Żarówka Edisona stała się ikoną nowoczesnej wynalazczości, a laser – symbolem nowych

Rozwój wymaga coraz wyższych średnich i szczytowych jasności - synchrotronowe źródła światła:

16/40

Krzysztof Kurek,

- \bullet technologii."
- - Fascynująca fizyka fotonowa \bullet
 - 26 nagród Nobla za badania z użyciem promieniowania synchrotronowego lacksquare
- Lasery na swobodnych elektronach lacksquareto źródła synchrotronowe 4-ej generacji, łączące zalety lasera:
 - spójność
 - ultra-krótkie impulsy lacksquare

oraz synchrotronu:

- przestrajalność energii fotonów \bullet
- wysokie natężenie
- zakres krótkofalowy

Unia Europejska Europejski Fundusz

Nowe źródła światła od zawsze były kamieniami milowymi rozwoju ludzkiej cywilizacji. Ogniska stanowią wyznacznik jej zarania. Świeca symbolizuje początek systematycznego zbierania wiedzy. Żarówka Edisona stała się ikoną nowoczesnej wynalazczości, a laser – symbolem nowych

Rozwój wymaga coraz wyższych średnich i szczytowych jasności - synchrotronowe źródła światła:

16/40

Krzysztof Kurek,

Źródła fotonów w Europie

Unia Europejska Europejski Fundusz Rozwoju Regionalnego

17/40

Krzysztof Kurek,

POLFEL, AGH, 8.11.2019

Laser na swobodnych elektronach – FEL (Free Electron Laser

- Idea 1971 r., John Madey, Stanford University
- Wiązka relatywistycznych elektronów + undulator

$$\lambda_r = \frac{\lambda_u}{2\gamma^2} \left(1 + \frac{K^2}{2} \right) \qquad K = \frac{eB\lambda_u}{2\pi m_e c}$$

- Ultrakrótkie impulsy (femto-, attosekundowe)
- Intensywność przekraczająca ok.1000 razy intensywność konwencjonalnych źródeł synchrotronowych
- Przestrajalna długość fali
- Zjawisko SASE dla zakresów UV rentgenowskiego

Krzysztof Kurek,

AGH, 8.11.2019 POLFEL,

Laser na swobodnych elektronach – FEL (Free

- Idea 1971 r., John Madey, Stanford University
- Wiązka relatywistycznych elektronów + undulato

$$\lambda_r = \frac{\lambda_u}{2\gamma^2} \left(1 + \frac{K^2}{2} \right) \qquad K = \frac{eB\lambda_u}{2\pi m_e c}$$

- Ultrakrótkie impulsy (femto-, attosekundowe)
- Intensywność przekraczająca ok.1000 razy intensywność konwencjonalnych źródeł synchrotronowych
- Przestrajalna długość fali
- Zjawisko SASE dla zakresów UV rentgenowsł

Krzysztof Kurek,

POLFEL, AGH, 8.11.2019

18/40

Fundusze Europejskie

×

$$\vec{E}(x,t) = \frac{e}{4\pi\varepsilon_0} \left\{ \frac{\hat{R} - \vec{\beta}}{\gamma^2 \left(1 - \beta \hat{R}\right)^3 R^2} \right\} + \frac{e}{4\pi\varepsilon_0 c} \left\{ \frac{\hat{R} \times \left[\left(\hat{R} - \vec{\beta} \right) \times \vec{\beta} \right]}{\gamma^2 \left(1 - \beta \hat{R}\right)^3 R} \right\}$$
Undulator radiation

$$\frac{d^{2}E_{1e}}{d\Omega d\omega} = \frac{e^{2}}{4\pi\varepsilon_{0}c} \frac{\left(K\gamma N_{u}\right)^{2}}{\left(1 + \frac{1}{2}K^{2} + \gamma^{2}\theta^{2}\right)^{4}} \left(\left(1 - \gamma^{2}\theta^{2}\cos 2\phi\right)^{2} + \gamma^{4}\theta^{4}\sin^{2}2\phi\right) \left(\frac{\sin\left(\pi N_{u}\frac{\Delta\omega}{\omega_{ph}}\right)}{\pi N_{u}\frac{\Delta\omega}{\omega_{ph}}}\right)^{2}$$

$$ap g \quad (K), \text{ electrons energy } \gamma \quad \lambda_{ph} = \frac{\lambda_{u}}{2\gamma^{2}} \left(1 + \frac{K^{2}}{2} + \gamma^{2}\theta^{2}\right) \quad \mathbf{K} = \frac{e^{B\lambda_{u}}}{2\pi m_{e}c} = 0.9_{B[T]\lambda_{u}[cm]} \quad B = 1.7B_{r}\exp\left(-\pi\frac{g}{\lambda_{u}}\right)^{2}$$

•

Tuneability: ga

Unia Europejska Europejski Fundusz Rozwoju Regionalnego

19/40

Emission by free electron:

Krzysztof Kurek,

$$\vec{E}(x,t) = \frac{e}{4\pi\varepsilon_0} \left\{ \frac{\hat{R} - \vec{\beta}}{\gamma^2 (1 - \beta \hat{R})^3 R^2} \right\} + \frac{e}{4\pi\varepsilon_0 c}$$
Undulator radiation
$$\vec{V} = \frac{e}{4\pi\varepsilon_0} \left\{ \frac{\hat{R} - \vec{\beta}}{\gamma^2 (1 - \beta \hat{R})^3 R^2} \right\} + \frac{e}{4\pi\varepsilon_0 c} = \frac{1}{2} \left\{ \frac{e}{2\pi\varepsilon_0 c} + \frac{1}{2} \left\{ \frac{e}{2\pi\varepsilon$$

Tuneability: gap g (K), electrons energy
$$\gamma \quad \lambda_{ph} = \frac{\lambda_u}{2\gamma^2} \left(1 + \frac{K^2}{2} + \gamma^2 \theta^2 \right) \quad \mathbf{K} = \frac{eB\lambda_u}{2\pi m_e c} = 0.9 \, B_{[T]\lambda_u[cm]} \qquad B = 1.7 B_r \exp\left(-\pi \frac{g}{\lambda_u} + \frac{g}{\lambda_u}\right)$$

Unia Europejska Europejski Fundusz Rozwoju Regionalnego $(\hat{R} \hat{R} \times$ $\times \overrightarrow{\beta}$ **Emission by free electron:** $-\beta \hat{R}^{(1)}$ $\gamma^2 (1$ -1.0 \ larb 8.0 $f/f_{\theta=0}$ 0.6 Intensity 0.4 0.2 -**-4x10**¹² 0.00 0.08 0.04 0.12 -2 2 4 0 θ [rad] Δ f[Hz]

$$E = A(\theta, \phi, \omega, \gamma) \bullet N_u^2 \frac{\sin \Delta \omega}{\Delta \omega}$$

Krzysztof Kurek,

POLFEL, AGH, 8.11.2019

Superriadiant emission from a bunch of electrons

- Bunch can be considered as a single particle multiply (10⁸) charged: constructive interference, in phase
- Coherent emission occurs when bunch length σ significantly shorter than emitted wavelength λ

$$E_{pulse} = E_{1e} \bullet \left| \sum_{j=1}^{N_e} e^{ikz_j} \right|^2 = E_{1e} \bullet N_e + E_{1e} \bullet f^2 \bullet N_e (N_e - 1) \sim (fN_uN_e)^2$$
$$f(k) = \int S(\vec{r}) exp(-i\vec{k}\vec{r}) d\vec{r}$$

 N_e – number of electrons in bunch; N_u – number of undulator periods. f – bunch form factor

• bunch transverse size in the range of $\frac{\lambda}{4\pi}$

• THz 450 μm – 100 μm

Unia Europejska

Europejski Fundusz

Krzysztof Kurek,

POLFEL, AGH, 8.11.2019

Superriadiant emission from a bunch of electrons

- Bunch can be considered as a single particle multiply (10⁸) charged: constructive interference, in phase
- Coherent emission occurs when bunch length σ significantly shorter than emitted wavelength λ

$$E_{pulse} = E_{1e} \bullet \left| \sum_{j=1}^{N_e} e^{ikz_j} \right|^2 = E_{1e} \bullet N_e + E_{1e} \bullet f^2 \bullet N_e (N_e - 1) \sim (fN_uN_e)^2$$
$$f(k) = \int S(\vec{r}) exp(-i\vec{k}\vec{r}) d\vec{r}$$

 N_e – number of electrons in bunch; N_u – number of undulator periods. f – bunch form factor

• bunch transverse size in the range of $\frac{\lambda}{4\pi}$

• THz 450 μm – 100 μm

Unia Europejska

Europejski Fundusz

Krzysztof Kurek,

POLFEL, AGH, 8.11.2019

SASE - Self Aplified Spontaneous Emission

- Spontaniczna emisja promieniowania synchrotronowego o długości λ_r w undulatorze
- Przekaz energii od wiązki elektronów do impulsu świetlnego ullet

Unia Europejska Europejski Fundusz Rozwoju Regionalneg

Źródło obrazów: SLAC, DESY

Krzysztof Kurek,

POLFEL, AGH, 8.11.2019

SASE - Self Aplified Spontaneous Emission

- Spontaniczna emisja promieniowania synchrotronowego o długości λ_r w undulatorze
- Przekaz energii od wiązki elektronów do impulsu świetlnego ullet

Unia Europejska Europejski Fundusz Rozwoju Regionalneg

Źródło obrazów: SLAC, DESY

Krzysztof Kurek,

POLFEL, AGH, 8.11.2019

SASE - Self Aplified Spontaneous Emission

- Spontaniczna emisja promieniowania synchrotronowego o długości λ_r w undulatorze
- Przekaz energii od wiązki elektronów do impulsu świetlnego
- Oddziaływanie tego impulsu z elektronami promieniowanie rozchodzi się szybciej niż elektrony przyspieszając niektóre a opóźniając inne - mikropakiety

Unia Europejska

Europejski Fundusz

Źródło obrazów: SLAC, DESY

Krzysztof Kurek,

- Elektrony skupione w jednym mikropakiecie wykonują ten sam ruch i emitują promieniowanie spójne, jak gdyby były jedną punktową cząstką naładowaną ładunkiem zawartym w całym mikropakiecie.
- Następuje wzrost natężenia promieniowania o czynnik równy liczbie elektronów w plastrze $(10^3 - 10^6)$.
- Ten proces wymaga czasu (i odległości)
- Tempo narastania zależy krytycznie od parametrów wiązki:
 - szczytowy prąd pakietu
 - średnica wiązki lacksquare
 - emitancja
 - rozmycie energetyczne
- Źródłem elektronów może być tylko akcelerator liniowy

Unia Europejska

Krzysztof Kurek,

- Elektrony skupione w jednym mikropaki emitują promieniowanie spójne, jak gdyl naładowaną ładunkiem zawartym w cały
- Następuje wzrost natężenia promieniow o czynnik równy liczbie elektronów w plastrze (10³ – 10⁶).
- Ten proces wymaga czasu (i odległości
- Tempo narastania zależy krytycznie od parametrów wiązki:
 - szczytowy prąd pakietu
 - średnica wiązki
 - emitancja
 - rozmycie energetyczne
- Źródłem elektronów może być tylko akcelerator liniowy

Unia Europejska Europejski Fundusz Rozwoju Regionalnego

22/40

POLFEL, AGH, 8.11.2019

Krzysztof Kurek,

g(Po

Konsorcjum POLFEL:

- Narodowe Centrum Badań Jądrowych
- Wojskowa Akademia Techniczna (eksperymenty THz i UV)
- Politechnika Warszawska (sygnały HF, synchronizacja czasowa)
- Politechnika Łódzka (systemy kontroli częstości rezonansowych i elektronika)
- Politechnika Wrocławska (kriogenika)
- Uniwersytet Zielonogórski (zasilanie i system chłodzenia wody)
- Uniwersytet w Białymstoku (źródło promieniowania Rtg i odwrotny efekt Comptona)
- Uniwersytet Jagieloński (diagnostyka wiązki, SOLARIS)

Unia Europejska Europejski Fundusz

Lodz University of Technology

Narodowe Centrum Badań Jądrowych National Centre for Nuclear Research ŚWIERK

instytut kategorii A+, JRC collaboration partner

Partnerzy przemysłowi: • Research Instruments

23/40

Kubala-Lamina

Krzysztof Kurek,

- Źródło elektronów
 - Całkowicie nadprzewodząca wyrzutnia elektronów
 - Laserowy system wzbudzania fotokatody
- Nadprzewodzący liniowy akcelerator elektronów
 - 4 kriomoduły, struktury akceleracyjne typu TESLA
 - Źródło mocy mikrofalowej wzmacniacze półprzewodnikowe
 - Układy optyki wiązki, w tym kompresor pakietów
 - Układy diagnostyki wiązki
 - System sterowania
- Undulatory
- Układy prowadzenia wiązek fotonowych i stacje badawcze
- Liczne systemy dodatkowe
 - układ kriogeniczny
 - układ próżniowy
 - systemy bezpieczeństwa
 - budynek
 - •

Unia Europejska Europejski Fundusz Rozwoju Regionalnego

24/40

THz – IR – VUV range

- In THz a superradiant undulator will be applied to generate radiation in the wavelength range from 450 μm – 100 μm (0.5 THz – 3 THz, 22 cm⁻¹ – 100 cm⁻¹, 2 meV– 12.5 meV)
- IR range 5 μm 30 μm
- In VUV it will work in self-amplified spontaneous emission mode in the λ range down to 60 nm
- 190 MeV, 12.5 µA electron beam
- Femtosecond x-ray pulses
- Neutrons pulsed beam
- Positons

Krzysztof Kurek,

POLFEL, AGH, 8.11.2019

- Electron bunch emission from UV driven ps laser Pb phtotocathode, 250 pC, 50 kHz
- Acceleration in RF field in superconducting TESLA-type resonators
- CW RF operation, fine field tuning (LLRF) and synchronisation
- **RF** power amplifiers
- Low emittance bunches electron optics, diagnostics
- Cryodistribution (2 K 1.8 K)
- **Radiation safety**

Accelerator principles – PolFEL diagram

Unia Europejska Europejski Fundusz

25/40

Krzysztof Kurek,

- Acceleration in RF field in superconducting TESLA-type resonators
- CW RF operation, fine field tuning (LLRF) and synchronisation
- **RF** power amplifiers
- Low emittance bunches electron optics, diagnostics
- Cryodistribution (2 K 1.8 K)
- **Radiation safety**

Krzysztof Kurek,

AGH, 8.11.2019 POLFEL,

Number of cryomodules

max electric field in CW operation

max electric field in pulsed operation (duty fa

Max. Electron energy in CW operation

Max electron energy in pulsed operation (duty

Max bunch charge

Max repetition rate

Electron beam current

Unia Europejska Europejski Fundusz Rozwoju Regionalnego

26/40

	VUV	THz
	4	2
	13 MV/m	13 MV/m
ctor = 0,2)	20 MV/m	
	140 MeV	70 MeV
factor = 0,2)	190 MeV	
	250 pC	250 pC
	50 kHz	50 kHz
	12.5 µA	12.5 µA

Krzysztof Kurek,

POLFEL, AGH, 8.11.2019

- Czas trwania: styczeń 2019 grudzień 2022 \bullet
- Całkowity budżet: 150 Mzł + VAT \bullet

Wąsko skolimowana wiązka o rozwartości stożka emisji około -

- Moc średnia 1 W
- Moc impulsowa 1 GW
- Strojenie długości fali w szerokim
- przedziale 50 nm– 500000 nm
- Polaryzacja pozioma
- gęstość energii 10¹⁸ J/cm²
- gęstość mocy 10¹³ W/cm²

FLASH: 90 nm-4.2 TELBE 0.1-3 THz FELBE 4-250 µm

Unia Europejska Europejski Fundusz

27/40

Krzysztof Kurek,

Czas trwania: styczeń 2019 – grudzień 2022 ullet

 Całkow 								
Gairow	CARRIER				Abs	sorption o)f photons	
Wasko sko	EXCITATION						Impact io	nization
L.	THERMALIZATION				Carri	ier–carrie	er scattering	J
 Moc średr 							Carrier-r	phonon scatte
 Moc impul 								
 Strojenie o przedziale 	CARRIER REMOVAL		Radiat	ive recoml	bination			
 Polarvzaci 				Carri	er diffusion	1		
 gęstość er 								
 gęstość m 	THERMAL AND							
	STRUCTURAL EFFECTS	,					Resolidifica	tion
			-					
		10 ⁻¹⁶	10-15	10-14	10 ⁻¹³	10-12	10-11	10-10
			fs			ps		
						Time	scale (s)	

Unia Europejska Europejski Fundusz Rozwoju Regionalnego

27/40

ka jaskrawość źródła

Krzysztof Kurek,

Czas trwania: styczeń 2019 – grudzień 2022 \bullet

Unia Europejska Europejski Fundusz Rozwoju Regionalnego

27/40

Krzysztof Kurek,

Rozdzielczość czasowa

Doświadczenie krzyżujące dwie wiązki

- pompa wytwarza oczekiwany stan w próbce
- sonda oddziałuje z tym stanem po określonym czasie •
- detektor rejestruje wiązkę będącą wynikiem oddziaływania

Unia Europejska Europejski Fundusz Rozwoju Regionalnego

Krzysztof Kurek,

Nisko energetyczne wzbudzenia w ciele stałym i molekułach bez przekazywania energii do innych stopni swobody układu.

<u>Spektoskopia</u>

- fonony
- wzbudzenia elektronowe
- oddziaływanie ze spinem magnetyzm.
- nadprzewodnictwo
- wzbudzenia rotacyjne i wibracyjne

wiązań wodorowych – biologia i medycyna Obrazowanie współczynniki odbicia i absorpcji <u>Technologia:</u> Detektory terahercowe,

telekomunikacja ...

Badania materiałowe: badanie struktury wewnętrznej konstrukcji

Impuls pola E i B w doświadczeniach pompa sonda

Unia Europejska

Europejski Fundusz

Mapping water content Joseph et al. J. Biophotonics, 2012, 7, 295-303

THz (med)imaging

f [THz]	E _p [μJ]	Θ[mrad]
0.5	3.0	40
1.0	3.4	30
2.0	3.0	20
3.0	2.1	16

Average power in the range of 150 mW at 1 THz

1-PCA; 2-OR; 3-CO₂ laser frequency mixing;

4-DFG; 5-opically pumped laser; 6-QCL; 7-p-Ge-laser.

30/40 AGH, 8.11.2019 POLFEL,

Krzysztof Kurek,

×

Vis - VUV

Mała głębokość absorpcji i krótka droga swobodna elektronów – dokładna lokalizacja

Spektroskopia. Fotojonizacja w gazach i klastrach, badanie mechanizmów przekazywania energii w gazie elektronowym i sieci krystalicznej

Obrazowanie

<u>Modyfikacja powierzchni w skali nanometrycznej</u>

Eksplozja kulombowska klastra 62 nm 7·10¹³ W/cm²

- mechanizm jonizacji
- stany ładunkowe przy wielokrotnej jonizacji
- ewolucja czasowa obdzierania z elektronów

20 -

0

-20

Krzysztof Kurek,

AGH, 8.11.2019 POLFEL,

* * * * * *

Unia Europejska

32/40

Europejski Fundusz Rozwoju Regionalnego Magazyn Beam stump \mathcal{D} ICS THZ p&p bio e. VUV **.** THz VUV PRE THE THZ

Krzysztof Kurek,

POLFEL, AGH, 8.11.2019

Krzysztof Kurek,

33/40

Krzysztof Kurek,

SCIENTIFIC CASE SUMMARY; THz

- absorption and emission spectroscopy in wide sample temperature range(LHe-HT), gases, liquids, molecules, solids
- research implementation e.g. photon counting detectors R&D
- imaging of 2D objects incl. biological speciments
- development of THz devices (e.g.THz detectors) etc.
- superconductivity studies
- light-matter interactions in semiconductors and 2D materials understanding e.g. how charge, orbital interact to produce emergent phenomena and exotic states of matter. dynamics of low dimensional states: plasmons, quantum well states
- time resolved studies with single cycle THz pump-probe

Unia Europejska Europejski Fundusz

34/40

Krzysztof Kurek,

POLFEL, AGH, 8.11.2019

SCIENTIFIC CASE SUMMARY; VUV

The VUV end-station will provide linearly polarized light having the wavelength ranged down to 80 nm (15 eV) at 3rd harmonics, high power density 10¹⁴ W/m², pulse duration below 1 ps, small light spot on the sample (10 μ m size) and pressure in the experimental chamber of 10-6 mbar.

This beamline will be uniquely able to accommodate following challenging experiments:

- VUV absorption, emission and photoelectron spectroscopy, both angular and time resolved, especially over small size and low-dimensional quantum systems (short electron MFP) = localization).
- Surface modification- ablation, melting-recrystalization, polymer UV crosslinking (shallow UV penetration, enough energy for bonds break).
- Time resolved studies of VUV interaction with matter with sub picosecond resolution e.g. plasma processes (fs pulse duration).

Unia Europejska Europeiski Fundusz

35/40

Krzysztof Kurek,

SCIENTIFIC CASE SUMMARY; IR

speciments.

- Raman spectroscopy of chemical and biological compounds. \bullet
- Fluorescence spectroscopy. \bullet
- Dynamics of chemical and biological reaction of two reactance in stopped-flow technique. Investigation of low probable or low concentrated molecular structure.
- Life sample imaging. \bullet

Unia Europejska Europejski Fundusz

36/40

POLFEL, AGH, 8.11.2019

SCIENTIFIC CASE SUMMARY; ICS

- Construction of Inverse Compton scattering (ICS) ICS X-ray source
 - High efficiency at high energy.
 - Directionality (1 m diameter beam at 1 km distance). \bullet
 - High energies! Not available at light sources. lacksquare

This kind of source provides e.g. experiments of different kind of imaging for biological and chemical speciments.

Unia Europejska

Europejski Fundusz

187 MeV Electron Beam

37/40

Krzysztof Kurek,

- linear accelerator solely consist of superconducting accelerating structures, including the photocathode, which is able to work in cw or long pulses (ms duration) mode.
- matter physics, biology and materials science.
- generation.
- A laboratory which encompasses country-wide experience in accelerator physics and solutions for large international, world-wide projects like todays E-XFEL, ESS, LCLS etc.

faza II - POLFEL upgrade

Unia Europejska Europejski Fundusz

• A test facility dedicated for electron acceleration physics and instrumentation will be built. The

Source of coherent THz - IR - UV radiation for experiments dedicated for photon interaction with

Source of 30 MeV – 187 MeV electron beam for positon, hard x-ray and gamma and neutron

instrumentation including industrial capabilities, and is able to provide advanced comprehensive

Krzysztof Kurek,

38/40 POLFEL, AGH, 8.11.2019

"Nowoczesna nauka i rozwój nowych technologii wymagają wielkich urządzeń badawczych... Ich brak stanowi istotną przeszkodę dla rozwoju nauki i postępu technologicznego. Faktycznie, jest to to rodzaj zacofania cywilizacyjnego, który w długim okresie czasu jest równie szkodliwy dla gospodarki, jak brak dróg szybkiego ruchu."

faza

Unia Europejska Europejski Fundusz Rozwoju Regionalnego

38/40

Krzysztof Kurek,

"THz imaging devices are the largest device segment in 2018-2019. Other types of THz devices should gain in importance in subsequent years, however. By 2024, THz-driven accelerators are expected to be the largest product segment, with THz imaging devices falling into second place., THz computer components will be the third-largest segment in 2029, followed by sensors, communications devices and spectroscopy instruments in that order."

TERAHERTZ RADIATION SYSTEMS: TECHNOLOGIES AND GLOBAL MARKETS

www.ncbj.gov.pl

Dziękuję za uwagę

