

Pomiary lotnicze i modelowanie transportu gazów cieplarnianych w atmosferze Europy - misja CoMet 1.0

M. Gałkowski^{1,2} oraz Zespół CoMet*

¹Instytut Biogeochemii im. Maxa Plancka, Jena, Niemcy ²Akademia Górniczo-Hutnicza, Kraków, Polska

Zespół CoMet

PI: Andreas Fix

Axel Amediek, Christian Büdenbender, Gerhard Ehret, Christoph Gerbig, Michal Galkowski, Christoph Kiemle, Mathieu Quatrevalet, Martin Wirth, Andreas Luther, Ralph Kleinschek, Leon Scheidweiler, Julia Marshall, Jinxuan Chen, Sara Defratyka, Mila Stanisavljevic, Andreas Forstmaier, Alexandru Dandocsi, Sebastian Wolff, Darko Dubravica, Norman Wildmann, Julian Kostinek, Patrick Jöckel, Anna-Leah Nickl, Theresa Klausner, Frank Hase, Matthias Frey, Jarosław Nęcki, Justyna Swolkień, Anke Roiger, André Butz, Martina Schmidt, Thomas Rockmann, Dominnik Brunner, Huilin Chen,

I wielu innych...

		Emitted Resulting atmospheric compound drivers		Radiative forcing by emissions and drivers				Level of confidence
	enhouse gases	CO2	CO2				1.68 [1.33	to 2.03] VH
		CH_4	CO_2 $H_2O^{str} O_3$ CH_4				0.97 [0.74	to 1.20] H
Anthropogenic	Well-mixed gre	Halo- carbons	O ₃ CFCs HCFCs				0.18 [0.01	to 0.35] H
		N ₂ O	N ₂ O				0.17 [0.13	to 0.21] VH
	s	CO	CO_2 CH_4 O_3				0.23 [0.16	to 0.30] M
	nd aeroso	NMVOC	CO_2 CH_4 O_3				0.10 [0.05	to 0.15] M
	Short lived gases ar	NO _x	Nitrate CH ₄ O ₃		¦ ¦⊦ <mark>≁→</mark>		-0.15 [-0.34	to 0.03] M
		Aerosols and precursors (Mineral dust,	Mineral dust Sulphate Nitrate Organic carbon Black carbon				-0.27 [-0.77	to 0.23] H
		SO ₂ , NH ₃ , Organic carbon and Black carbon)	Cloud adjustments due to aerosols				-0.55 [-1.33	to -0.06] L
			Albedo change due to land use				-0.15 [-0.25	to -0.05] M
Natural	Changes in solar irradiance						0.05 [0.00	to 0.10] M
Total anthropogenic RF relative to 1750					2011		2.29 [1.13	to 3.33]
					1980			to 1.86] H
					1950		0.57 [0.29	to 0.85] M
				-1	0	1	2 3	3
	Radiative forcing relative to 1750 (W m ⁻²)							

IPCC Assessment Report 5: Summary for Policymakers (2013)

Za: Le Quere et al., 2018

Za: Le Quere et al., 2018, IPCC 2013

Emisje CO₂ a zmiany temperatury w XXI wieku

Za: IPCC AR5, 2013

Za: IPCC, 2013 oraz Sanois et al., 2016

Za: Sanois et al., 2016

V

Kolory jasne: metody top-down (inwersje baysowskie); ciemne: metody bottom-up (inwentaryzacje*). Oznaczenia kategorii źródeł: zielony – mokradła I torfowiska, różowy – spalanie biomasy, brązowy – paliwa kopalne, niebieski – rolnictwo i odpady, różowy – inne naturalne. Za: Sanois et al., 2016

Globalny obieg metanu Wzrost roli mokradeł w XXI wieku

Za: Zhang et al., 2017

METODY BILANSOWANIA

Bottom-up (inwentaryzacje)

Za: EDGAR, JRC

Ć

Top-down (modelowanie inwersyjne)

-

Braki w obserwacjach

Po lewej, u góry: Sieć punktów poboru prób dwutygodniowych (NOAA.gov). Po prawej: rozkład źródeł emisji CH₄, Sanouis et al., 2016

Pomiary satelitarne SCIAMACHY i Sentinel 5P

Po lewej: Wzbogacenie CH₄ nad USA. Widoczny w lewej dolnej części pik metanu to rejon wydobycia gazu łupkowego "Four Corners", Kort et al., 2014. Po prawej: Średnie kolumnowe stężenia metanu nad Nigerią, pomiar instrumentem TROPOMI na satelicie Sentinel 5P w okresie listopad 2018 – luty 2019 (ESA, 2019)

Pomiary satelitarne Satelity SWIR

Za: Earth Explorer Report for Mission Selection, 2015

Średnie pokrycie chmurami w latach 2007-2009 Za: ENVISAT, ESA

Pomiary satelitarne Satelity SWIR

Pomiary satelitarne SWIR - wady i zalety

- Zalety:
 - Możliwość obserwacji globalnie w wysokiej rozdzielczości przestrzennej
 - Koszty jednostkowe obserwacji
- Wady:
 - Ograniczona precyzja w pomiarach gazów cieplarnianych
 - Chmury olbrzymim problemem (c.f. emisje metanu z tropikalnych mokradeł)
 - Możliwość obserwacji wyłącznie w ciągu dnia
 - Trudności na dużych szerokościach geograficznych
- Dodatkowo: konieczne jest również dopracowanie narzędzi, które pozwolą na wykorzystanie strumieni danych z nowych instrumentów

Podsumowanie – stan obecny

- Nadal duże niepewności w oszacowaniach budżetów gazów cieplarnianych
- Powód: brak pełnego zrozumienia mechanizmów oraz brak wystarczających ilości obserwacji
- Duże niepewności opóźniają i utrudniają przyjęcie optymalnej strategii walki z globalnym ociepleniem
- W ważnych regionach emisji brak wystarczającej ilości obserwacji nie mamy pełnej wiedzy o mechanizmach emisji i niszczenia gazów cieplarnianych (nadal!)
- Nowe technologie (satelity) są bardzo obiecujące, ale wymagają wielu udoskonaleń

Potrzebne są nowe narzędzia pomiarowe, ale wraz z nimi potrzebujemy również nowych (lepszych) modeli, które będą w stanie wykorzystywać nowe dane

MISJA COMET 1.0

CoMet^{*} 1.0 – zakres i cele

* Carbon Dioxide and Methane Mission

- Pomiary lotnicze gazów cieplarnianych. Głównie: CH₄ and CO₂
- Dokładne oszacowanie regionalnych strumieni gazów cieplarnianych
- Walidacja pomiarów satelitarnych (Sentinel-5P, GOSAT, OCO-2)
- Testy innowacyjnych instrumentów teledetekcyjnych (pasywnych i aktywnych)
- Misja pilotażowa opracowane techniki zostaną użyte później na bardziej wymagających obszarach geograficznych

Główny obszar badań – Górny Śląsk

Między 400 Gg a 1500 Gg CH₄ emitowanych rocznie.

CoMet 1.0 Najważniejsze fakty

- 5 samolotów
- 5 tygodni lotów
 Od 12 maja do 15 czerwca, 2018
- Dodatkowo pomiary naziemne przy użyciu wielu rodzajów instrumentów (FTIR, lidary wiatru, platformy mobilne, małe bezzałogowce – bliska koordynacja z projektem MEMO²)
- Ok. 130 zaangażowanych naukowców
- Pomiary nad dużą częścią Europy
- Różnorodność celów naukowych podczas każdego dnia pomiarów

CoMet 1.0

Equipment

Instru	ment acronym	Description	Aircraft
CHARM-F	DLR	Lidar (IPDA): XCO ₂ and XCH ₄	
JIG	MPI	Cavity Ringdown Spectrometer	HALO
JAS	MPI	Flask sampler	
miniDOAS	IUP-UH	Differential Optical Absorption Spectroscopy	
BAHAMAS	DLR	HALO basic data acquisition system (meteo)	
Dropsonde	s DLR	Meteorological sondes	
FOKAL	Menlo/DLR	Miniaturized Frequency comb	-
МАМАР	IUP-UB	NIR-SWIR spectrometer (XCO ₂ and XCH ₄)	
CRDS	IUP-UB	Cavity Ringdown Spectrometer	FUB Cessna 207
QCLS	DLR	Quantum Cascade Laser Spectrometer	
CRDS	DLR	Cavity Ringdown Spectrometer	
Sampler	DLR/MPI	Flask sampler	DLR Cessna 208
METPOD	DLR	Cessna basic data acquisition system	
CRDS	CNRS, C. Crevoiser	One coordinated HALO+F20 flight over France	SAFIRE F20
HYSPEX	DLR	Hyperspectral imager - 2 flights over USCB	DLR DO-228

Plus ground equipment in USCB (4 FTIR, 3 wind lidars, mobile CRDS and drones)

CoMet 1.0 Pomiary *teledetekcyjne aktywne:* CHARM-F

- LIDAR IPDA (Integrated Path Differential Absorption) do równoczesnego pomiaru stężeń CO₂ i CH₄
- Dwie długości fali na każdą molekułę online/offline
- Demonstrator misji MERLIN (~2024)

CoMet 1.0 Pomiary *in-situ*: JIG (CRDS)

CoMet 1.0 Pomiary *in-situ*: JAS

- Dodatkowo 63 próby zebrane przez awionetkę D-FDLR (Cessna)
 - Niższe partie atmosfery (0 4 km)
 - Wszystkie podczas lotów nad Polską

MODELOWANIE

Symulacje WRF-GHG w projekcie CoMet

Prognozy

- WRF-GHG v.3.9.1.1.
- Obliczenia na SK Mistral (DKRZ, Hamburg)
- Prognozy +3 dni
- Obliczenia operacyjne przy użyciu danych początkowych i brzegowych z prognoz **ECMWF oraz CAMS**
- Prognozy parametrów modelu wegetacji VPRM CO₂ fluxes
- Konfiguracja uproszczona dla zapewnienia prędkości obliczeń

0.00 0.02 0.04 0.06 0.08 0.10 0.12 [ppm]

CH4

(anthr.)

Reanalizy

- Symulacje po zakończeniu kampanii
- Modyfikcja modelu:
 - Optymizacja użytych parametryzacji (wolniejsze, dokładniejsze)
 - Zmiana domen obliczeniowych
 - Wprowadzenie dodatkowych znaczników (ang. tagged tracers)
 - Dane wyjściowe o b. wysokiej częstotliwości

CAMS C-IFS Average Offsets over Europe ["+": CAMS overestimates] CO2 = +2.77 ppm, CH4 = -34 ppb, CO = 10.3 ppb

CoMet 1.0

- Możliwy rozkład obliczonego sygnału na czynniki pochodzące z poszczególnych źródeł
 Ostawie szie sził śwach i sztawa sił śwach i sztawa si sztawa sitawa sitawa sitawa sitawa sita
- Optymizacja wyników obliczeń metodą inwersyjną pozwoli oszacować siłę poszczególnych źródeł

- Modyfikacja kodu WRF-GHG code dodano ponad 120 nowych znaczników
- CH₄: każde źródło znakowane
 - Wliczając aktywne / nieaktywne kopalnie węgla, wysypiska śmieci oraz inne znane źródła o niewiadomych wielkościach emisji

Podsumowanie

- Misja CoMet była pilotażową kampania nt. pomiarów gazów cieplarnianych
- Użyto najnowocześniejszych technik obserwacyjnych
- Zebrane bogactwo danych posłuży do doskonalenia narzędzi numerycznych (modele)
- Zatwierdzono misję CoMet 2.0, z planowanymi dwoma kampaniami – CoMet Arctic (2022) i CoMet Wetlands (2023)

Partnerzy:

Finansowanie projektu:

