

AGH UNIVERSITY OF SCIENCE AND TECHNOLOGY Faculty of Physics and Applied Computer Science

Projekt nowego międzywydziałowego laboratorium technik rentgenowskich w oparciu o źródło MetalJet.

dr hab. inż. Sebastian Wroński

Dyfraktometr rentgenowski

GE Measurement & Control

Wysokorozdzielczy nanotomograf komputerowy Phoenix nanotom

- Lampa rtg max. 180kV
- Minimalny rozmiar voxela <0.5um
- Maszyna wytrzymałościowa do testów ściskania i rozciągania próbek podczas pomiarów

Umożliwia badania :

- struktury wewnętrznej materiałów
 biologicznych, tworzyw, ceramiki, układów
 krzemowych oraz metali
- mikropęknięć
- powierzchni
- inspekcja jakości mikro urządzeń

Wyposażenie

Przystawka do testów mechanicznych

- o Max. zmiana rozmiarów 10mm
- Max. siła 500N (1%)
- ο Rozdzielczość tensometru: 3μm
- Prędkość: 0.2mm/min 2.0mm/min

Tkanka kostna

Kompozyt polimerowo-gumowy

Przykłady

Zwapnienia zastawki serca

Polimerowe skafoldy do regeneracji tkanki kostnej

M. Kopytek, **J. Tarasiuk, S. Wronski**, A. Undas, J. Natorska, Non-vitamin K antagonist oral anticoagulants (NOACs) attenuate valvular calcification in patients with severe aortic stenosis, European Heart Journal 43:2 (2022)

K. Kłodowski J. Kamiński K. Nowicka **J. Tarasiuk S. Wroński**, M. Świętek M. Błażewicz H. Figiel K. Turek T. Szponder, Micro imaging of implanted scaffolds using combined MRI and micro CT, Computerized Medical Imaging and Graphics, 38 (2014) 458–468

Przykłady

HEART - Heart Embryology and Anatomy Research Team

LIDER X, National Centre for Research and Development (NCBiR), Poland (LIDER/7/0027/L-10/18/NCBR/2019) "Virtual, interactive visualisation of the three-dimensional architecture of the human heart"

prof. dr hab. n. med. Mateusz Hołda

P. Wojtal, G. Haynes, J. Klimowicz, K. Sobczyk, J. Tarasiuk, S. Wroński, J. Wilczyński; *The earliest direct evidence of mammoth hunting in Central Europe - the Krakow Spadzista site (Poland)*, Quaternary Science Reviews 213 (2019) 162–166

Osiągnięcia LMiNT

• A P T I V •

Działalność LMiNT od roku 2012

• Działalność dydaktyczna

Realizowane przedmioty : Mikrotomografia, Laboratorium nowoczesnych materiałów i technologii 32 prace inżynierskie 16 prac magisterskich

Działalność naukowa
42 publikacje
2 rozdziały w książkach

• Udział w projektach badawczych udział w 6 Grantach NCN i NCBiR

SMART TECHNOLOGY

FOR SMARTER MOBILITY

• **Usługi komercyjne** 64 umowy komercyjne

SOLSI-CAD

Materiały słabo absorbujące

Zależność współczynnika absorpcji od liczby Z

KONIECZNOŚĆ KONTRASTOWANIA SŁABO ABSORBUJĄCYCH MATERIAŁÓW

Z. Wang, P. Verboven, B. Nicolai, Contrast-enhanced 3D micro-CT of plant tissues using different impregnation techniques, Wang et al. Plant Methods (2017) 13:105

L. Krzemień, M. Strojecki, **S. Wroński**, **J. Tarasiuk**, M. Łukomski, Dynamic response of earlywood and latewood within annual growth ring structure of Scots pine subjected to changing relative humidity, Holzforschung, 69/5 (2015) 555–561

Kontrast fazowy

 $n = 1 - \delta + i\beta$

 δ - współczynnik załamania promieniowania β - współczynnik osłabienia promieniowania

Kontrast fazowy w praktyce

Wspólna inicjatywa rozszerzenia bazy aparaturowej

Zaangażowane wydziały oraz techniki badawcze

Wydział Fizyki i Informatyki Stosowanej AGH

Tomografia absorpcyjna oraz fazowa, badania strukturalne, tomografia z kontrastem dyfrakcyjnym, mikrospektroskopia rentgenowska

Wydział Inżynierii Metali i Informatyki Przemysłowej

badania strukturalne, tomografia z kontrastem dyfrakcyjnym

nisko kątowe rozpraszanie promieniowania rentgenowskiego (SAXS), mikrospektroskopia rentgenowska

Źródło promieniowania rentgenowskiego

Tradycyjne źródła promieniowania rentgenowskiego U, U, Wout insulator W. cathode (filament) grid х anode deflection Lampa z wirująca anodą unit rotating anode stator of induction motor glass envelope magnetic bearings lens rotor/anode cathode support block target filament 8 rotor target focusing cup electrons exit window

Źródła mikrofocus

Źródło promieniowania rentgenowskiego

Spot size 0.8µm Wysuszona łodyga paprotki. Voxel size 500nm

nanofocus[®] resolution

Technologia MetalJet

The Excillum MetalJet series of X-ray sources are based on our unique metal-jet technology. Achieving significantly higher brightness and smaller spot sizes than any other available microfocus X-ray source, the MetalJet can create very brilliant and small beams enabling the closest possible to synchrotron performance in the home lab.

E-beam power density

Technologia MetalJet

Gallium Alloy

A gallium (Ga) rich alloy is available. Its 9.2 keV (1.3 Å) K α emission line is close to the copper (Cu) K α emission line.

Indium Alloy

An indium (In) rich alloy is also available. Its 24 keV (0.51 Å) K α emission line is close to the silver (Ag) K α emission line

AVAILABLE ANODE ALLOYS

Anode Alloy	Gallium (weight %)	Indium (weight %)
ExAlloy G1	95	5
ExAlloy I1	68	22
ExAlloy I2	47	37
ExAlloy 13	75	25

TECHNICAL SPECIFICATIONS

	MetalJet	MetalJet		
	D2+160 kV	E1 160 kV		
Target material	ExAlloy I1, I2, I3	ExAlloy I1, I2, I3		
Target type	Liquid jet			
Voltage	21-160 kV	21-160 kV		
Power	0-250 W 0-700 V			
Focal spot size	5-30 µm	5-30 μm		
Emission stability	< 1%			
Position stability				
Application	High-pressure crystallography, charge density mapping, SAXS	CT phase-contrast imaging, HEDM, SAXS		

Energy [keV]

Efekt utwardzania wiązki

1e+5 С 1e+4 AI Са 1e+3 µ/p [cm²/g] Fe Co 1e+2 Ni Cu 1e+1 1e+0 1e-1 1e-2 0.001 O. Energy 0.1 Energia [MV]

Zależność współczynnika absorpcji od energii

Zmiana widma po przejściu przez wodę

4000 3500 3000 No 2500 2000 corrections 1500 1000 700 600 5000 BHC 4000 Corrections 3000 2000 350 400

Wpływ utwardzania wiązki na wynik rekonstrukcji

bh = 0Without Beam Hardening bh = 0.8

With Beam Hardening

Hybrid Photon Counting (HPC) X-ray detectors

Direct detection

- Charge captured in electric field
- => All photons captured
- => Signal remains in pixel

Indirect detection

X-ray

Radiation scattered in scintillator
 Signal spread across pixels
 Light partially lost

•Huge active area for widest q-coverage

Dual energy discrimination to minimize background
No dark current for better data from long exposures
Direct detection and small pixels for high angular resolution
High dynamic range with more than 4 billion counts per pixel

Technical specifications

EIGER2 R CdTe	4M
Number of detector modules	2 × 4
Active area, width \times height [mm ²]	155.1 × 162.2
Pixel size [µm²]	75 × 75
Point-spread function	1 pixel (FWHM)
Energy-discriminating thresholds	2
Photon energy [keV]	8 - 24.2
Threshold energy [keV]	4 - 30
Maximum count rate [cps/mm ²]	9.8 x 10 ⁸
Counter depth [bit/threshold]	
Acquisition mode	simultaneous read/write
lmage bit depth [bit]	32
Optional vacuum compatibility?	yes
Cooling	Water-cooled
Dimensions (WHD) [mm ³]	235 × 237 × 372
Weight [kg]	15

Propozycja stanowiska badawczego

Projekt proponowanego stanowiska badawczego

Prototypowe stanowisko badawcze zaprojektowane w ramach współpracy AGH z firmą PROTO

Wydajność źródła

INCOATEC innovative coating technologies

Wielowarstwowe zwierciadła

http://www.excillum.com/products/metaljet/metaljet-with-optics/

Wydajność źródła

POLYX (w budowie)

POLYX jest kompaktową linią służącą do mikroobrazowania i mikrospektroskopii rentgenowskiej w zakresie energii 4-15 keV. Nazwa POLYX wywodzi się od optyki polikapilarnej i polichromatycznego promieniowania, które mogą być wykorzystane na linii POLYX. POLYX pozwala na obrazowanie struktury (2D i 3D), składu pierwiastkowego oraz faz chemicznych w badanych próbkach.

Parametry linii

PARAMETRY	WARTOŚĆ
Dostępny zakres energii fotonów	4 – 15 keV
Mody pracy	 "biała wiązka": 10¹² fot./s/mm² "wysoka intensywność": podwójny monochromator wielowarstwowy (DMM): 10¹¹ fot./s/mm² (@8 keV), BW 1-2% "wysoka rozdzielczość": podwójny monochromator krystaliczny Si(111) (DCM): 10⁹ fot./s/mm² (@8 keV), BW 2×10⁻⁴
Rozmiar plamki w miejscu próbk (poziomy x pionowy)	wiązka niezogniskowana (maksymalny rozmiar wiązki) : 20 mm × 4 mm, wiązka zogniskowana (minimalny rozmiar ogniska): polikapilary: 8 μm – 200 μm monokapilara: 2 μm
Intensywność promieniowania w miejscu próbki	Maksymalna liczba fotonów w ognisku 10 μm @ 8 keV: DMM: 10 ¹¹ fot./s DCM: 10 ⁹ fot./s https://synchrotron.uj.edu.pl/li

Small Angle X-ray Scattering (SAXS)

Small-angle X-ray scattering (SAXS) czyli elastyczne rozpraszanie promieni rentgenowskich pod niskimi kątami, umożliwia badania niejednorodności w zakresie nanometrów. W obrazie dyfrakcyjnym zawarte są informacje dotyczące kształtu, wielkości i odległości makromolekuł o uporządkowaniu blisko zasięgowym. Efekt mało kątowego rozpraszania pojawia się, gdy w materiale są cząstki o rozmiarach rzędu kilku nm

R. J. Kline, D. F. Sunday, D. Windover and W. Wu, 'Bringing CD-SAXS to the Fab', SEMICON West 2014, 2014

Laboratory Diffraction Contrast Tomography

Reconstructed crystallography

Laboratory Diffraction Contrast Tomography

J. SUN, Ch. HOLZNER, H. BALE, M. TOMITA, N. GUENINCHAULT, F. BACHMANN, E. LAURIDSEN, T. INAGUMA, M. KIMURA, 3D Crystal Orientation Mapping of Recrystallization in Severely Cold-rolled Pure Iron Using Laboratory Diffraction Contrast Tomography. ISIJ International 60:3 (2020) 528–533

Porównanie technik

	3D EBSD	Synchrotron DCT	GrainMapper3D™ lab DCT
Probe	Electrons	Synchrotron X-rays	Laboratory X-rays
Non-destructive	x	\checkmark	×
Voxel dimension	0.2 µm	1-5 µm	~5 µm
Angular resolution	0.1 - 0.5°	0.05°	~0.1°
Scanning time	4 – 60+ hours	0.5h – 2h	~2h-10h
Grain sizes	< 1 µm	20-500 µm	40-500 μm
4D Studies	x	*	V
Sub-grain deformation	×	x	x
Sample Volume	(50 µm)^3	(0.3-2.0 mm)^3	(0.3-2.0 mm)^3

Laboratory Diffraction Contrast Tomography

 3D grain maps are perfectly suited for coupling to 3D computer simulations of microstructure evolution

W. Ludwig, A. King, P. Reischig et al, Materials Science and Engineering A 524 (2009) 69–76

I.M. McKenna, S.O. Poulsen, E.M. Lauridsen, W. Ludwig, P.W. Voorhees, Acta Materialia, 78 (2014), 125-134

Total reflection X-ray spectroscopy (TXRF)

Total reflection X-ray spectroscopy (TXRF) is a powerful analytical technique for qualitative and quantitative analysis of trace and ultra-trace elements in a sample.

Spectrum of a sample containing 288 pg Mn, excited by the 2 kW (40 kV/50 mA) diffraction X-ray tube (red) and the liquidmetal jet X-ray tube (blue).

Data and LLDs of single element samples measured with liquid metal jet X-ray tube.

Element	Sample mass [pg]	Acquisition time [s]	Net peak area	Background area	Calculated LLD [pg]
Mn	288	100	2918	86	0.9
Ni	258	1000	54291	455	0.3

Mikro spektroskopia rentgenowska

Mikro spektroskopia rentgenowska

Jakob C Larsson *et al* 2018 *Phys. Med. Biol.* **63** 164001

V. Vanpeene, A. King, E. Maire, L. Roué, In situ characterization of Si-based anodes by coupling synchrotron X-ray tomography and diffraction, Nano Energy 56 (2019) 799-812,

High resolution XRD

Synchrotron diffractometer - EDDI

EDDI is among the few beamlines world-wide dedicated to energy dispersive (ED) diffraction and the only one specialized in high resolution residual stress-, texture and microstructure depth profiling.

LIMAX - X-ray analysis with high-flux MetalJet sources

Novel high-flux X-ray sources using liquid metal as targets enable X-ray studies in the laboratory that previously only had been possible at synchrotrons. The department runs two laboratories (LIMAX-160, LIMAX-70) equipped with liquid-metal-jet X-ray sources as part of the X-ray Corelab.

High resolution XRD

Prawo bragga

 $2d\sin\theta = n\lambda$

311

ΜοΚα

ΜοΚβ

	Spektrum für	Austenite (t	$th = 21.5^{\circ})$:	
hkl	d ^{hkl}	Ehkl	$\mu(E^{hkl})$	τ_0^{hkl}
111	0.207547 nm	16.013 keV	372.66 cm^{-1}	2.50 μm
200	0.179741 nm	18.490 keV	248.46 cm^{-1}	3.75 μm
220	0.127096 nm	26.149 keV	94.20 cm^{-1}	9.90 μm
311	0.108388 nm	30.662 keV	60.16 cm^{-1}	15.50 μm
222	0.103774 nm	32.026 keV	52.85 cm^{-1}	17.65 μm
400	0.089871 nm	36.980 keV	35.01 cm^{-1}	26.64 μm

Zmienność rozkładu naprężeń w głąb dla próbki magnezowej po obróbce powierzchniowej

CT5000 5kN in-situ loadcell tensile/compression stage for X-Ray CT/diffraction applications

CT Heating and Cooling cell -20°C to +160°C for X-Ray CT/diffraction applications

Podsumowanie

- Wraz z odpowiednią optyką możliwe jest osiągnięcie wyjątkowej intensywności wiązki porównywalnej z synchrotronem,
- W jednym źródle możliwe jest posiadanie dwóch wiązek o energii 9.2keV i 24keV,
- Dwie linie charakterystyczne źródła oraz możliwość sterowania dyskryminatorem energii detektora Dectris EIGER2R4M umożliwią elastyczną zmianę zakresu energii podczas różnorakich eksperymentów,
- Szerokie spektrum detektorów (2 detektory 2D o rozmiarze piksela 75µm oraz 3.7µm oraz detektor SDD) daje możliwość zaimplementowania innych technik badawczych,
- Modułowa budowa i duża przestrzeń próbki umożliwia instalację dodatkowych przystawek (komory próżniowej, komory temperaturowej, maszyny wytrzymałościowej oraz innych),
- Szerokie spektrum optyki (wiązka równoległa i zogniskowana)
- Możliwość budowy kolejnych stanowisk badawczych - Dual port

Przykład implementacji źródła MetalJet dla dwóch stanowisk

Dziękuję z uwagę