

technische universität dortmund université **PARIS-SACLAY**

Supported by:

Fantastic penguins and where to find them

Seminarium Wydziału Fizyki i Informatyki Stosowanej AGH Janina Nicolini 12.04.2024

The Standard Model of Particle Physics

Fermions

Shortcomings of the Standard Model

CKM d b S

Credit J.A. Romeu

- What is the origin of the **hierarchies**? (Fermion masses, CKM)
- Why are there **three** fermion **generations**?
- How do **neutrinos** get their **masses**?
- What are **dark matter** and **dark energy**?
- ...

Shortcomings of the Standard Model

CKM d b S

Credit J.A. Romeu

• What is the origin of the **hierarchies**? (Fermion masses, CKM)

• Why are there **three** fermion **generations**?

• • •

Standard model is approximation and incomplete

New particles and/or interaction?

Indirect Searches - a way forward

• Heisenberg uncertainty relation $\Delta t \Delta E \ge \frac{\hbar}{4\pi}$

• Example Bhabha scattering

Higher order processes

Indirect Searches - a way forward

• Heisenberg uncertainty relation $\Delta t \Delta E \ge \frac{\hbar}{4\pi}$

• Example Bhabha scattering

• Search for **deviations**

Higher order processes

Indirect Searches - a way forward

• Heisenberg uncertainty relation $\Delta t \Delta E \ge \frac{\hbar}{4\pi}$

• Example Bhabha scattering

• Search for deviations

• Large vs small dataset

Higher order processes

Electric charge

Electric charge

• $b \rightarrow s\ell^+\ell^-$ transition

- Direct $b \rightarrow s$ same charge \neq
- Penguin diagrams

Flavour-changing neutral currents (FCNC)

Electric charge

• $b \rightarrow s\ell^+\ell^-$ transition

- Direct $b \rightarrow s$ same charge f
- Penguin diagrams

Flavour-changing neutral currents (FCNC)

Strongly suppressed BF $\sim 10^{-6}$

Electric charge

• $b \rightarrow s\ell^+\ell^-$ transition

- Direct $b \rightarrow s$ same charge \neq
- Penguin diagrams

Flavour-changing neutral currents (FCNC)

Effective Field Theories I

• Direct searches have not found anything

• Fermi Theory of β - decay: 1934

Effective Field Theories I

• Direct searches have not found anything

• Fermi Theory of β - decay: 1934

• W discovery : 25.01.1983

Effective Field Theories I

• Direct searches have not found anything

• Fermi Theory of β - decay: 1934

• W discovery : 25.01.1983

• Use **Effective Field Theory**

Effective Field Theories II

• Operator O_i : low energy part

Effective Field Theories II

- Operator O_i : low energy part
- Wilson coefficients C_i : high energy part

 \rightarrow something like coupling strength, can be measured!

How can we measure them?

- Strong interaction → hadron bound states
- Need to predict hadronic state
 - \rightarrow non-pertubative \neq
 - \rightarrow form factor predictions

Spectator quark

How can we measure them?

- Strong interaction \rightarrow hadron bound states
- Need to predict hadronic state
 - \rightarrow non-pertubative \neq
 - \rightarrow form factor predictions
- Charm loops
- Measure $b \rightarrow s\ell^+\ell^-$ in decay chains of hadrons

The LHCb experiment

- Single-arm forward spectrometer
- Optimised for beauty and charm

 \rightarrow forward boost

Why is it a spectrometer?

• Tracking of charged particles

Momentum through Lorentz force

Why is it a spectrometer?

- Tracking of charged particles
- RICH system

Cherenkov light

Angle is velocity dependent $v = m \cdot p$

$$E = \sqrt{m^2 c^4 + p^2 c^2}$$

Why is it a spectrometer?

- Tracking of charged particles
- RICH system
- CALO for PID for all

 \rightarrow energy for neutrals only

Exkurs: Electron vs Muon

Worse momentum resolution

- Muons easy to identify

Reduced signal efficiency

• Electrons suffer significantly from bremsstrahlung loss

Exkurs: Electron vs Muon

What channel do we choose?

Mesons

$0 \rightarrow 0$	$0 \rightarrow 1$	$0 \rightarrow 2$	
$B \to K \ell^+ \ell^-$	$B \to K^* \ell^+ \ell^-$	$B \to K_2^*(1430$	
$B_s \to f_0(980)\ell^+\ell^-$	$B_s \to \phi \ell^+ \ell^-$	$B_s \rightarrow f_2(1525)$	

Baryons

$1/2 \rightarrow 1/2$	$1/2 \rightarrow 3/2$	1/2 -
$\Lambda^0_b \to \Lambda \ell^+ \ell^-$	$\Lambda_b^0 \to \Lambda^*(1520) \mathcal{C}^+ \mathcal{C}^-$	$\Lambda_b^0 \to \Lambda^*($
$\Xi_b\to\Xi\ell^+\ell^-$	$\Xi_b \to \Xi^*(1820) \mathcal{C}^+ \mathcal{C}^-$	
	$\Omega_b^- o \Omega^- \ell^+ \ell^-$	

spin = intrinsic angular momentum

 $\rightarrow 5/2$ $(1820)\ell^+\ell^-$

What channel do we choose?

Mesons

$0 \rightarrow 0$	$0 \rightarrow 1$	$0 \rightarrow 2$	
$B \to K \ell^+ \ell^-$	$B \to K^* \ell^+ \ell^-$	$B \rightarrow K_2^*(1430)$	
$B_s \to f_0(980)\ell^+\ell^-$	$B_s \to \phi \ell^+ \ell^-$	$B_s \rightarrow f_2(1525)$	

Baryons

 $\ell^+\ell^-$

'narrow' final state hadron \rightarrow easy to select 'broad' final state hadron \rightarrow interferences of overlapping states weakly-decaying final state \rightarrow easier theoretical interpretation

Weak vs narrow vs broad final state

- \land weakly-decaying hyperon
- lower efficiency to detect in acceptance
- lower efficiency to reconstruct vertex

Weak vs narrow vs broad final state

- \land weakly-decaying hyperon
- lower efficiency to detect in acceptance
- lower efficiency to reconstruct vertex

interferences with other resonances Λ^* always decays in acceptance easy to reconstruct vertex

What channel do we choose?

Mesons

$0 \rightarrow 0$	$0 \rightarrow 1$	$0 \rightarrow 2$	
$B \to K \ell^+ \ell^-$	$B \to K^* \ell^+ \ell^-$	$B \to K_2^*(1430)$	
$B_s \rightarrow f_0(980)\ell^+\ell^-$	$B_s \to \phi \ell^+ \ell^-$	$B_s \rightarrow f_2(1525)$	

Baryons $1/2 \rightarrow 1/2$ $1/2 \rightarrow 3/2$ $\Lambda_b^0 \to \Lambda \ell^+ \ell^- \qquad \Lambda_b^0 \to \Lambda^*(1520)\ell^+ \ell^- \qquad \Lambda_b^0 \to \Lambda^*(1820)\ell^+ \ell^ \Xi_b \to \Xi \ell^+ \ell^- \qquad \Xi_b \to \Xi^*(1820) \ell^+ \ell^ \Omega_h^- o \Omega^- \ell^+ \ell^-$

spin = intrinsic angular momentum

Testing different spin configurations Weakly-decaying hadrons rich angular structure

 $1/2 \rightarrow 5/2$

Exkurs: Production fractions

About 1 000 000 000 000 *bb* pairs/year

0.3% 35% 35% 8.5%

How often to they hadronise into each type?

0.5% 18% 1.5%* 1.5%

*educated guess

Exkurs: Production fractions

35% 0.3% 35% 8.5%

18% 1.5%* 1.5% 0.5%

*educated guess

Branching fractions

• Fraction of initial hadron decaying into

defined final state

- Usually energy dependent
- Choose q^2 : transferred momentum

in the $b \rightarrow s$ transition

Lepton Flavour Universality (LFU) ratios

- $E > m(\mu, e)$ relativistic limit $m(\mu, e) \rightarrow 0$
- Branching fractions should be identical
 - \rightarrow form factor uncertainty cancels

$r = \frac{\text{BF}(H_b \to H_s \mu^+ \mu^-)}{\text{BF}(H_b \to H_s e^+ e^-)}$

Lepton Flavour Universality (LFU) ratios

- $E > m(\mu, e)$ relativistic limit $m(\mu, e) \rightarrow 0$
- Branching fractions should be identical
 - \rightarrow form factor uncertainty cancel
- Experimentally challenge: difference in reconstruction
 - \rightarrow double ratio with each having a normalisation mode
- Theoretically and experimentally clean

$$R = \frac{\mathrm{BF}(H_b \to H_s \mu^+ \mu^-)}{\mathrm{BF}(H_b \to H_s J/\psi(\mu^+ \mu^-))}$$
$$\times \frac{\mathrm{BF}(H_b \to H_s J/\psi(e^+ e^-))}{\mathrm{BF}(H_b \to H_s e^+ e^-)}$$

Angular analysis

- Study angles between momenta of particles
- Many observables (angular coefficients)
 - → Easier to disentangle Wilson coefficients

Angular analysis

- Study angles between momenta of particles
- Many observables (angular coefficients)
 - \rightarrow Easier to disentangle Wilson coefficients

•
$$\frac{\mathrm{d}\Gamma}{\mathrm{d}q^2} = \sum_{\lambda} |A_{\lambda}|^2$$
 with A_{λ} being transvers

- $A_{\lambda}(H_i(FF), C_i)$ depend on helicity amplitudes H_i
 - \rightarrow non-local FF contributions introduce q^2 dependence

sity amplitudes

Ratio of different angular coefficients to cancel FF uncertainties **P**(')

What happened in the last decade?

Branching fractions

0.5

Only some examples

1.5

What happened in the last decade?

Branching fractions

Latest LFU ratio

Simultaneous extraction of ratio for $B^+ \to K^+ \ell^+ \ell^- (R(K))$ and $B^0 \to K^{*0} (\to K^+ \pi^-) \ell^+ \ell^- (R(K^*))$

PRD 108 (2023) 032002

Compatible with the SM. What went wrong?

Latest LFU ratio

Simultaneous extraction of ratio for $B^+ \to K^+ \ell^+ \ell^- (R(K))$ and $B^0 \to K^{*0} (\to K^+ \pi^-) \ell^+ \ell^- (R(K^*))$

• Saw too many electrons

• BKG non negligible \rightarrow peaks under signal

Latest LFU ratio

• BKG non negligible \rightarrow peaks under signal

6000

, 1		1	-
2			_
			-
			-
			-
			-
ru		ed.	-
÷ I	e'i		-
			-
			-
			-

Latest branching fraction measurements

• Reconstructed via displaced $K^+K^-\mu^+\mu^-$ vertex • Veto q^2 for $B_s^0 \to \phi(\to \mu^+\mu^-)\phi, B_s^0 \to \phi J/\psi$ and $B_s^0 \to \phi \psi(2S)$

• Normalised to $B_s^0 \rightarrow \phi J/\psi$

• Simultaneous fit to different q^2 bins

 $B(B_s^0 \to \phi \mu^+ \mu^-) = (8.14 \pm 0.22 \pm 0.16 \pm 0.39 \pm 0.03) \times 10^{-7}$ abs. BF q2 extrapol. stat. syst. In $q^2[1.1, 6.0]$ GeV²/ c^4 : 3.6 σ (LCSR+Lattice) and 1.8 σ (LCSR)

Latest branching fraction measurements

LHCb ГНСр

• First measurement of rare decay with $\Lambda(1520) \rightarrow pK^{-1}$ resonance (Narrow $\Lambda(1520)$ width ~16 MeV) • Normalised to $\Lambda_h^0 \to pK^-J/\psi$

• High- q^2 consistent with SM, low- q^2 inconclusive

Angular observables

- First measurement of full set of observables
- Reconstructed via $B^+ \to K^{*+}(\to K_s^0 \pi^+) \mu^+ \mu^-$

with
$$K_s^0 \to \pi^+ \pi^-$$

- \rightarrow lower statistics due to reconstruction of K_s^0
- General good agreement with SM predictions
- P_2 and P'_5 show same deviations as in $B^0 \to K^{*0} \mu^+ \mu^-$

Unbinned angular analysis

- Use $B^0 \to K^{*0} (\to K^+ \pi^-) \mu^+ \mu^-$
- Select $K^{*0} \rightarrow K^+ \pi^-$ via k^2
- Data parametrised as function of q^2
 - via polynomial expansion
 - \rightarrow direct extraction of Wilson coefficients
- Unbinned maximum-likelihood fit
 - \rightarrow share all physics parameters in two q^2 regions
- Use 2011+2012+2016 data

PRD 109 (2024) 052009

Unbinned angular analysis

• First time **unbinned maximum-likelihood fit**

\rightarrow to obtain Wilson Coefficients

$$\begin{aligned} \Delta \mathcal{C}_9 &= -0.93^{+0.53}_{-0.57} \quad (-0.68^{+0.33}_{-0.46}) \,, \\ \Delta \mathcal{C}_{10} &= 0.48^{+0.29}_{-0.31} \quad (0.24^{+0.27}_{-0.28}) \,, \\ \Delta \mathcal{C}'_9 &= 0.48^{+0.49}_{-0.55} \quad (0.26^{+0.40}_{-0.48}) \,, \\ \Delta \mathcal{C}'_{10} &= 0.38^{+0.28}_{-0.25} \quad (0.27^{+0.25}_{-0.27}) \,, \end{aligned}$$

• C_9 is in agreement within **1.8-1.9** σ with SM

• Global compatibility between all $C_{9,10}^{(\prime)}$ **1.3-1.4** σ

What are the next steps?

Run 3 of LHC started
→ more data to analyse
→ more precise binning, new observables
Look for unobserved modes e.g.

 $\Xi_b \to \Xi \mu^+ \mu^- \text{ or } \Lambda_b^0 \to \Lambda e^+ e^-$

What are the next steps?

Run 3 of LHC started
→ more data to analyse
→ more precise binning, new observables
Look for unobserved modes e.g.

 $\Xi_b \to \Xi \mu^+ \mu^- \text{ or } \Lambda_b^0 \to \Lambda e^+ e^-$

• Study other FCNC at LHCb

$$\rightarrow b \rightarrow d\ell^+\ell^-$$

$$\rightarrow c \rightarrow u\ell^+\ell^-$$

Back-Up Amplitudes

- Amplitudes defined in different bases
- Helicity: spin projection along direction of motion
- Transversity: spin projection along direction transverse to interaction plane

