Electronic Quantum Transport Simulation for 2D Materials

Ming-Hao Liu (劉明豪)

Department of Physics, National Cheng Kung University, Taiwan

Institut für Theoretische Physik, Universität Regensburg, Germany

17 May 2024

Image: A math a math

Outline

103¹

Basics

- Landauer-Büttiker formalism
- Real-space Green's function method
- Lead self-energy
- Peierls substitution
- Gauge transformation for vector potential
- Semiclassical motion of Bloch electrons
- Electrostatics
- Periodic boundary hopping

Applications

- 2DEG & MoS₂
- Graphene
- Bilayer graphene
- Lieb lattice

Part I

Basics

Ming-Hao Liu (NCKU Physics)

Seminar, AGH Krakow

17 May 2024

<ロ> <同> <同> < 同> < 同> < 同> < 同> <

3/59

Landauer-Büttiker formalism¹

Büttiker formula⁴

$$I_{\alpha} = \sum_{\beta} G_{\alpha\beta} (V_{\alpha} - V_{\beta})$$

イロト イヨト イヨト イヨト

- ¹Datta, S., *Electronic Transport in Mesoscopic Systems* (1995)
- ²Landauer, R., Philosophical Magazine **21** (1970) 863
- ³Anderson, P. W., Thouless, D. J., Abrahams, E., and Fisher, D. S., Phys. Rev. B 22 (1980) 3519
- ⁴Büttiker, M., Physical Review Letters 57 (1986) 1761

Ming-Hao Liu (NCKU Physics)

Seminar, AGH Krakow

4-point resistance

Büttiker formula:

$$egin{aligned} &I_lpha &= \sum_eta \, G_{lphaeta}(V_lpha - V_eta) \ lpha, eta &= 1, 2, 3, 4 \end{aligned}$$

Explicitly:

$$\begin{split} I_1 &= G_{12}(V_1 - V_2) + G_{13}(V_1 - V_3) + G_{14}(V_1 - V_4) \\ &= (G_{12} + G_{13} + G_{14})V_1 - G_{12}V_2 - G_{13}V_3 - G_{14}V_4 \\ &= \sum_{\beta \neq 1} G_{1\beta}V_1 - G_{12}V_2 - G_{13}V_3 - G_{14}V_4 \end{split}$$

Similarly for I_2 , I_3 , I_4 .

ヘロト ヘロト ヘヨト

크

In terms of matrices:

$$\begin{pmatrix} I_1 \\ I_2 \\ I_3 \\ I_4 \end{pmatrix} = \begin{pmatrix} \sum_{\beta \neq 1} G_{1\beta} & -G_{12} & -G_{13} & -G_{14} \\ -G_{21} & \sum_{\beta \neq 2} G_{2\beta} & -G_{23} & -G_{24} \\ -G_{31} & -G_{32} & \sum_{\beta \neq 3} G_{3\beta} & -G_{34} \\ -G_{41} & -G_{42} & -G_{43} & \sum_{\beta \neq 4} G_{4\beta} \end{pmatrix} \begin{pmatrix} V_1 \\ V_2 \\ V_3 \\ V_4 \end{pmatrix}$$

By grounding (4) (i.e., $V_4 = 0$) and looking at only I_1, I_2, I_3 :

$$\begin{pmatrix} I_1 \\ I_2 \\ I_3 \end{pmatrix} = \underbrace{\begin{pmatrix} \sum_{\beta \neq 1} G_{1\beta} & -G_{12} & -G_{13} \\ -G_{21} & \sum_{\beta \neq 2} G_{2\beta} & -G_{23} \\ -G_{31} & -G_{32} & \sum_{\beta \neq 3} G_{3\beta} \end{pmatrix}}_{\mathbb{G}} \begin{pmatrix} V_1 \\ V_2 \\ V_3 \end{pmatrix}$$

By matrix inversion:

$$\begin{pmatrix} V_1 \\ V_2 \\ V_3 \end{pmatrix} = \underbrace{\begin{pmatrix} R_{11} & R_{12} & R_{13} \\ R_{21} & R_{22} & R_{23} \\ R_{31} & R_{32} & R_{33} \end{pmatrix}}_{\mathbb{R} = \mathbb{G}^{-1}} \begin{pmatrix} I_1 \\ I_2 \\ I_3 \end{pmatrix}$$

Ming-Hao Liu (NCKU Physics)

17 May 2024

Since V_2 , V_3 are voltage probes, $I_2 = I_3 = 0$. Setting $I_1 = I$, we have:

$$\begin{pmatrix} V_1 \\ V_2 \\ V_3 \end{pmatrix} = \begin{pmatrix} R_{11} & R_{12} & R_{13} \\ R_{21} & R_{22} & R_{23} \\ R_{31} & R_{32} & R_{33} \end{pmatrix} \begin{pmatrix} I \\ 0 \\ 0 \end{pmatrix}$$

and hence:

 $V_2 = R_{21}I$ $V_3 = R_{31}I$

Therefore, the four-point resistance is given by:

$$R_{4p} \equiv \frac{V_2 - V_3}{I} = R_{21} - R_{31}$$

Datta, S., Electronic Transport in Mesoscopic Systems (1995)

Real-space Green's function method: Recipe

(S: scattering region, i: incoming lead, o: outgoing lead)

	0.00	
will in Francis		SILSI
		0.00,

17 May 2024

Brief summary of the recipe:

 $\begin{array}{ll} \mathcal{H}_{0} = [\cdots]_{N \times N} & (\text{clean tight-binding Hamiltonian}) \\ \mathcal{U} = [\cdots]_{N \times N} & (\text{onsite energy}) \\ \Sigma_{p}(E) = [\cdots]_{N \times N} & (\text{self-energy at energy } E \text{ for lead } p) \\ \mathcal{H}(E) = \mathcal{H}_{0} + \mathcal{U} + \sum_{p} \Sigma_{p}(E) & (\text{effective Hamiltonian}) \\ \mathcal{G}_{R}(E) = [E\mathbbm{1} - \mathcal{H}]^{-1} & (\text{retarded Green's function at energy } E) \\ \Gamma_{p}(E) = -2 \text{Im} \Sigma_{p}(E) & (\text{broadening matrix at energy } E \text{ for lead } p) \\ \mathcal{T}_{o \leftarrow i}(E) = \text{Tr} \left[\Gamma_{o}(E) \mathcal{G}_{R}(E) \Gamma_{i}(E) \mathcal{G}_{R}^{\dagger}(E) \right] & (\text{transmission from } i \text{ to } o) \end{array}$

• □ > • • □ > • □ > • • □ > •

Brief summary of the recipe:

 $\begin{array}{ll} H_0 = [\cdots]_{N \times N} & (\text{clean tight-binding Hamiltonian}) \\ U = [\cdots]_{N \times N} & (\text{onsite energy}) \\ \Sigma_p(E) = [\cdots]_{N \times N} & (\text{self-energy at energy } E \text{ for lead } p) \\ H(E) = H_0 + U + \sum_p \Sigma_p(E) & (\text{effective Hamiltonian}) \\ G_R(E) = [E\mathbbm{1} - H]^{-1} & (\text{retarded Green's function at energy } E) \\ \Gamma_p(E) = -2 \text{Im} \Sigma_p(E) & (\text{broadening matrix at energy } E \text{ for lead } p) \\ T_{o \leftarrow i}(E) = \text{Tr} \Big[\Gamma_o(E) G_R(E) \Gamma_i(E) G_R^{\dagger}(E) \Big] & (\text{transmission from } i \text{ to } o) \end{array}$

Matrix size:

$$N = N_{\rm sites} \times N_{\rm orbitals}$$

Typically, $O(N) \leq 10^4$: easy, $O(N) > 10^8$: out of reach.

≣ ⊳

• • • • • • • • • •

æ

≣ ⊳

Image: A mathematical states and a mathem

æ

æ

Lead self-energy:

$$\Sigma = \Sigma(E, H_0, H_{\pm})$$

¹Wimmer, M., PhD thesis, Universität Regensburg, 2008

Ming-Hao Liu (NCKU Physics)

Seminar, AGH Krakow

(Schur decomposition¹)

17 May 2024

9/59

Perpendicular magnetic field

(Peiers substitution)

(Peierls phase)

To maintain translational invariance in the leads:

Perpendicular magnetic field

(Peiers substitution)

(Peierls phase)

To maintain translational invariance in the leads:

¹Baranger, H. U. and Stone, A. D., Physical Review B 40 (1989) 8169; Mreńca-Kolasińska, A.,

Chen, S.-C., and Liu, M.-H., npj 2D Materials and Applications 7 (2023) Article number: 64 - つへく

• We adopt $\mathbf{A}_1 = -y_1 B \hat{\mathbf{x}}_1 \qquad (\text{in lead 1})$ • We wish to have

 $\mathbf{A}_n = -\mathbf{y}_n B \hat{\mathbf{x}}_n \qquad \text{(in lead } n\text{)}$

¹Baranger, H. U. and Stone, A. D., Physical Review B 40 (1989) 8169; Mreńca-Kolasińska, A.,

Chen, S.-C., and Liu, M.-H., npj 2D Materials and Applications 7 (2023) Article number; 64

Ming-Hao Liu (NCKU Physics)

Seminar, AGH Krakow

11/59

• We adopt $\label{eq:A1} \mathbf{A}_1 = -y_1 B \hat{\mathbf{x}}_1 \qquad (\text{in lead 1})$ • We wish to have

 $\mathbf{A}_n = -\mathbf{y}_n B \hat{\mathbf{x}}_n \qquad \text{(in lead } n\text{)}$

The answer¹ is:

$$\mathbf{A}_{n}(x_{1}, y_{1}) = \mathbf{A}_{1}(x_{1}, y_{1}) + \nabla f_{n}(x_{1}, y_{1})$$
$$f_{n}(x_{1}, y_{1}) = Bx_{1}y_{1}\sin^{2}\theta_{n} + \frac{1}{2}B(x_{1}^{2} - y_{1}^{2})\sin\theta_{n}\cos\theta_{n}$$

¹Baranger, H. U. and Stone, A. D., Physical Review B 40 (1989) 8169; Mreńca-Kolasińska, A.,

Chen, S.-C., and Liu, M.-H., npj 2D Materials and Applications 7 (2023) Article number: 64

Ming-Hao Liu (NCKU Physics)

Seminar, AGH Krakow

We adopt
A₁ = -y₁B̂x₁ (in lead 1)
We wish to have

 $\mathbf{A}_n = -\mathbf{y}_n B \hat{\mathbf{x}}_n \qquad (\text{in lead } n)$

The answer¹ is:

$$\mathbf{A}_{n}(x_{1}, y_{1}) = \mathbf{A}_{1}(x_{1}, y_{1}) + \nabla f_{n}(x_{1}, y_{1})$$
$$f_{n}(x_{1}, y_{1}) = Bx_{1}y_{1}\sin^{2}\theta_{n} + \frac{1}{2}B(x_{1}^{2} - y_{1}^{2})\sin\theta_{n}\cos\theta_{n}$$

If $\theta_1 = 0$, we may simply denote with

$$(x_1,y_1)\to (x,y)$$

¹Baranger, H. U. and Stone, A. D., Physical Review B 40 (1989) 8169; Mreńca-Kolasińska, A.,

Chen, S.-C., and Liu, M.-H., npj 2D Materials and Applications 7 (2023) Article number; 64

Ming-Hao Liu (NCKU Physics)

Global vector potential

Since we wish A_n to take effect only in lead *n*, we may:

$$f_n(x,y) \rightarrow \zeta_n f_n(x,y)$$
, $\zeta_n = \frac{1}{\exp \frac{x_n^0 - x_n}{d} + 1}$

The final gauge transformation can be achieved by

$$f(x,y) = \sum_{n=2}^{N} \zeta_n f_n(x,y)$$

$$f_n(x,y) = Bxy \sin^2 \theta_n + \frac{1}{2} B(x^2 - y^2) \sin \theta_n \cos \theta_n$$

Global vector potential:

$$\mathbf{A} = \mathbf{A}_1 + \nabla f$$

¹Baranger, H. U. and Stone, A. D., Physical Review B 40 (1989) 8169; Mreńca-Kolasińska, A.,

Chen, S.-C., and Liu, M.-H., npj 2D Materials and Applications 7 (2023) Article number: 64

Two examples

Ming-Hao Liu (NCKU Physics)

Seminar, AGH Krakow

13/59

Semiclassical motion of Bloch electrons

A DOST

Semiclassical equations of motion:¹

$$\dot{\mathbf{r}} = \frac{1}{\hbar} \nabla_k E(\mathbf{k}) + \overline{\text{anomalous velocity}^2}$$
$$\dot{\hbar \mathbf{k}} = -e(\mathbf{E} + \dot{\mathbf{r}} \times \mathbf{B})$$

2D (x-y plane) subject to $\mathbf{E} = (E_x, E_y, 0)$ and $\mathbf{B} = (0, 0, B)$:

$$\dot{x} = \frac{1}{\hbar} \frac{\partial E(k_x, k_y)}{\partial k_x} \qquad \qquad \dot{k}_x = -\frac{e}{\hbar} (E_x + B_z \dot{y})$$
$$\dot{y} = \frac{1}{\hbar} \frac{\partial E(k_x, k_y)}{\partial k_y} \qquad \qquad \dot{k}_y = -\frac{e}{\hbar} (E_y - B_z \dot{x})$$

Coupled ordinary differential equations (ODEs).

¹Ashcroft, N. W. and Mermin, N. D., *Solid State Physics*, New York: Holt, Rinehart and Winston, 1976

²Chang, M.-C. and Niu, Q., Phys. Rev. Lett. **75** (1995) 1348

Ming-Hao Liu (NCKU Physics)

Seminar, AGH Krakow

・ロ・・ (日・・ (日・)

Part II

Applications

- 2DEG & MoS₂
- Graphene
- Bilayer graphene
- Lieb lattice

æ

・ロン ・回 ・ ・ ヨン・

2DEG & MoS₂

- Test calculations for QPC
- MoS₂ superlattice

æ

・ロト ・ 日 ・ ・ ヨ ・ ・ ヨ ・ ・

Discretization by finite-difference approximation

The approximation approaches exact when:

$$U = 4t$$
, $t = \frac{\hbar^2}{2m^*a^2}$, $|\mathbf{k}|a \ll 1$

Datta, S., Electronic Transport in Mesoscopic Systems (1995)

Seminar, AGH Krakow

Finding a good lattice spacing

Considering $m^* = 0.067 m_0$ for GaAs:

Ming-Hao Liu (NCKU Physics)

Seminar, AGH Krakow

17 May 2024 18/59

Finding a good lattice spacing

Considering $m^* = 0.067 m_0$ for GaAs:

Ming-Hao Liu (NCKU Physics)

Seminar, AGH Krakow

17 May 2024 18/59

Revisiting an old experiment

VOLUME 60, NUMBER 9

FIG. 1. Point-contact resistance as a function of gate voltage at 0.6 K. Inset: Point-contact layout.

FIG. 2. Point-contact conductance as a function of gate voltage, obtained from the data of Fig. 1 after subtraction of the lead resistance. The conductance shows plateaus at multiples of $e^2/\pi\hbar$.

van Wees, B. J. et al., Physical Review Letters 60 (1988) 848

29 FEBRUARY 1988

Revisiting an old experiment

VOLUME 60, NUMBER 9

FIG. 1. Point-contact resistance as a function of gate voltage at 0.6 K. Inset: Point-contact layout.

Let's try with:

FIG. 2. Point-contact conductance as a function of gate voltage, obtained from the data of Fig. 1 after subtraction of the lead resistance. The conductance shows plateaus at multiples of $e^2/\pi\hbar$.

$$m^* = 0.067 m_0 \;, \quad a = 5 \, {
m nm} \;, \quad t = {\hbar^2 \over 2 m^* a^2} pprox 22.74 \, {
m meV}$$

van Wees, B. J. et al., Physical Review Letters 60 (1988) 848

Ming-Hao Liu (NCKU Physics)

Seminar, AGH Krakow

17 May 2024

29 FEBRUARY 1988

20/59

Ming-Hao Liu (NCKU Physics)

Seminar, AGH Krakow

20/59

Ming-Hao Liu (NCKU Physics)

Seminar, AGH Krakow

20/59

Ming-Hao Liu (NCKU Physics)

Seminar, AGH Krakow

17 May 2024

Imaging local current & charge densities

Ming-Hao Liu (NCKU Physics)

17 May 2024

Imaging local current & charge densities

Ming-Hao Liu (NCKU Physics)

17 May 2024

Two-band effective mass model for MoS₂

Using effective masses^{*a*} $m_e^* = 0.4625$, $m_h^* = 0.5659$ and adopting a = 2 nm, hopping parameters are:

$$t_e = -0.0206 \, \mathrm{eV} \; , \quad t_h = 0.0168 \, \mathrm{eV}$$

^aFang, S. et al., Phys. Rev. B 92 (2015) 205108

<ロ> <同> <同> < 回> < 回> < 回> = 三

Twisted bilayer MoS₂

▲ 重 ▶
▲ 重 ▶
17 May 2024

Image: A math a math

Twisted bilayer MoS₂

Ming-Hao Liu (NCKU Physics)

Seminar, AGH Krakow

17 May 2024

Model periodic potential¹

¹Same form used in, e.g., Kraft, R. et al., Phys. Rev. Lett. 125 (2020) 21770 1. () () ()

A two-terminal MoS₂ superlattice device

A. Garcia-Ruiz and M.-H. Liu, arXiv:2401.10436

We consider $\theta \approx 1^{\circ} \implies R_m \approx 18.47 \text{ nm}$

イロト イヨト イヨト イヨト

A two-terminal MoS₂ superlattice device

A. Garcia-Ruiz and M.-H. Liu, arXiv:2401.10436

We consider $\theta \approx 1^{\circ} \implies R_m \approx 18.47 \text{ nm}$

What about γ ?

Ming-Hao Liu	(NCKU	Physics)
--------------	-------	----------

< □ > < □ > < □ > < □ > < □ > < □ >
17 May 2024

Ming-Hao Liu (NCKU Physics)

17 May 2024 26/59

Seminar, AGH Krakow

Ming-Hao Liu (NCKU Physics)

17 May 2024 26

Seminar, AGH Krakow

Ming-Hao Liu (NCKU Physics)

Seminar, AGH Krakow

17 May 2024 26/59

Ming-Hao Liu (NCKU Physics)

Seminar, AGH Krakow

Comparison with continuum model

A. Garcia-Ruiz and M.-H. Liu, arXiv:2401.10436

17 May 2024

æ

Magnetotransport: Emerging Hofstadter's butterfly

A. Garcia-Ruiz and M.-H. Liu, arXiv:2401.10436

dataTBE_Ay_2lead_a2W500L500_moire_phi0p98743deg_Vmoire0p002_Bzm2to5_Ef0to0p012_vert_512x512

Ming-Hao Liu (NCKU Physics)

< 클 ▶ < 클 ▶ 클 17 May 2024

ヘロト ヘロト ヘヨト

Magnetotransport: Emerging Hofstadter's butterfly

A. Garcia-Ruiz and M.-H. Liu, arXiv:2401.10436

Ming-Hao Liu (NCKU Physics)

17 May 2024

Magnetotransport: Emerging Hofstadter's butterfly

A. Garcia-Ruiz and M.-H. Liu, arXiv:2401.10436

Ming-Hao Liu (NCKU Physics)

Seminar, AGH Krakow

17 May 2024

2

Graphene

- Test calculations
- Transverse magnetic focusing
- Spin-dependent transverse magnetic focusing
- Graphene/hBN moiré superlattice

Scalable tight-binding model for (low E) graphene¹

Basic idea:

$$E(k) = \pm \hbar v_F k$$
, $\hbar v_F = \frac{3}{2} t_0 a_0 = \frac{3}{2} \frac{t_0}{s_r} s_f a_0$

¹Liu, M.-H. et al., Phys. Rev. Lett. **114** (2015) 036601

Scalable tight-binding model for (low E) graphene¹

A LOSA

Basic idea:

$$E(k) = \pm \hbar v_F k$$
, $\hbar v_F = \frac{3}{2} t_0 a_0 = \frac{3}{2} \frac{t_0}{s_f} s_f a_0$

¹Liu, M.-H. et al., Phys. Rev. Lett. **114** (2015) 036601

Ming-Hao Liu (NCKU Physics)

Seminar, AGH Krakow

(日)

Scalable tight-binding model for (low E) graphene¹

Basic idea:

$$E(k) = \pm \hbar v_F k$$
, $\hbar v_F = \frac{3}{2} t_0 a_0 = \frac{3}{2} \frac{t_0}{s_f} s_f a_0$

Example:

$$1\,\mu\text{m}^2$$
 : 3.8×10^7 C atoms $\xrightarrow{s_f=20}$ 9.5×10^4 lattice sites

¹Liu, M.-H. et al., Phys. Rev. Lett. **114** (2015) 036601

Ming-Hao Liu (NCKU Physics)

Seminar, AGH Krakow

(日)

Electron wave and quantum optics in graphene

A review

Journal of Physics: Condensed		
Matter		
	- 2	×
	4	
	5	
ACCEPTED MANUSCRIPT • OPEN ACCESS	6	Tonical Beniew
Electron wave and quantum ontics in graphene	l í	
Election wave and quantum optics in graphene	9	
To obe this article before publication: Himadri Chakraborti et al 2004 J. Phys.: Condens. Matter in press https://doi.org/10.1008/1005-	10	Electron wave and quantum optics in graphene T
<u>init/addition</u>	11	
	1 1	Himadri Chakraborti', Cosimo Gorini', Angelika
Manuscript version: Accepted Manuscript	14	Parmentier' David Percente' Klaus Richter' Proten
Accepted Manuscript is "the version of the article accepted for publication including all changes made as a result of the peer review process.	15	Beallean ¹ Benjamin Sardraf ⁴ Christian Schleenherer ⁷
and which may also include the addition to the article by IOP Publishing of a header, as article ID, a cover sheet and/or an Accepted	16	Wenmin Yang ⁴
manager warmant, an weaping any one wearg, spectrum of one parager main by the external and as memory	18	Université Parie Saclay, CEA, CNRS, SPEC, 91191, Giptun Yorthy France
This Accepted Manuscript is 0 2024 The Author(s). Published by IOP Publishing Ltd.	19	*Institut für Theoretische Physik, Universität Regeneburg, D90629 Regeneburg, Germany
	20	⁴ Department of Physics and Center for Quantum FourDepart Breazeth and
	21	⁴ Department of Physics, Institute of Physics, Balapett Maispestry of
	23	Technology and Economics, Misegertem eks. 2, 11-1111 Refrapert, Rongary ¹ MTA-DME Considered upp der Wach Structured Memorylogie Research Course
As the vierson of Necord of this article is going to be / has been published on a god open access basis under a CC wit 4.0 scence, this Accepted Manuscript is available for muse under a CC Bit 4.0 licence immediately.	24	Mirgorton ekp. 3, H-1111 Rudapest, Hangley
Everyone is cermitted to use all or part of the original content in this article, orovided that they adhere to all the terms of the licence	25	*Université Grenzélle Alpes, CNRS, Grenzélde DR, Indittat Niel, 2000 Ormolda Enstea
https://creativecommons.org/licences.bu/1.0	26	⁷ Nanoelectronics Group, Department of Physics, Eniversity of Rasel, Basel,
Athough reasonable endeavours have been taken to obtain all necessary permissions from third parties to include their copyrighted corners	20	Netherinal
when this article, their full citation and copyright line may not be present in this Accepted Manuacript version, senture using any connect from this article, please refer to the Version of Record on IOPscience once oublished for full citation and copyright details, as permissions may be required.	29	Abstract. In the last-decide, mashing his become an exciting obtilism for
All third party content is fully copyright protected and is not published on a gold open access basis under a CC BY Science, unless that is	30	electron optical exponents, in make aspects superior to conventional two-
specificanj scales in se injust capital in se vinitali di Perciti.	31	dimensional electron gases \$2.00.00; Wemaps advantage, besides the ultra-large mobilities, is the fine control Way the electrostation, which gives the possibility
Vew the attoin online for updates and enhancements.	32	of realising gap-less and compact per interfaces with high precision. The latter best rest-trained inter- a - make little in moderate re-provide fields and serve
	34	as building blocks in complex electron interferometers. Thanks to the Dirac
	35	spectrum and its fill minimized liberry phase, the internal (valley and sublattice) degrees of freedom, and the interchility to tailor the band structure using menimity
	36	effects, such interferometers from up a completely new playground haved on novel
	33	of graphene obstrue option, fabrication methods used to realise electron-optical
	39	devices, and principles for corresponding numerical simulations. Based on this, on along a differentiable in parious of halfstire transmission and simula-
	40	building blocks of fection optical devices both in single and bilayer graphene,
	41	legislighting the never pleyees that is brought in compared to conventional 2000.00. After derivering the different magnetic field regimes in graphene p-n junctions and
	43	antistication, we conclude by discussing the state of the set in graphene-based
	44	
	45	
	40	
	43	
	40	
	50	
	52	1 augulia kasthe Ophysik mi regeneburg de
	53	13 makk peter tittk hans ha
	54	
	55	
	57	\vee '
	53	
This content was downloaded from IP address 132.198.181.28 on 07/05/2024 at 20:13	59	T
	60	

Chakraborti, H. et al., Journal of Physics: Condensed Matter (2024)

Ming-Hao Liu (NCKU Physics)

Seminar, AGH Krakow

A 3 A

Transverse magnetic focusing (TMF)

Taychatanapat, T., Watanabe, K., Taniguchi, T., and Jarillo-Herrero, P., Nat. Phys. 9 (2013) 225 , and the second second

Ming-Hao Liu (NCKU Physics)

Seminar, AGH Krakow

Ming-Hao Liu (NCKU Physics)

Seminar, AGH Krakow

Ming-Hao Liu (NCKU Physics)

Seminar, AGH Krakow

Ming-Hao Liu (NCKU Physics)

Ming-Hao Liu (NCKU Physics)

Ming-Hao Liu (NCKU Physics)

Seminar, AGH Krakow

Ming-Hao Liu (NCKU Physics)

Seminar, AGH Krakow

Ming-Hao Liu (NCKU Physics)

Ming-Hao Liu (NCKU Physics)

Seminar, AGH Krakow

Ming-Hao Liu (NCKU Physics)

Seminar, AGH Krakow

Ming-Hao Liu (NCKU Physics)

Seminar, AGH Krakow

17 May 2024 34/59

Ming-Hao Liu (NCKU Physics)

Seminar, AGH Krakow

34/59

17 May 2024

Ming-Hao Liu (NCKU Physics)

Ming-Hao Liu (NCKU Physics)

Ming-Hao Liu (NCKU Physics)

Seminar, AGH Krakow

Quantum transport simulation for TMF

Mreńca-Kolasińska, A., Chen, S.-C., and Liu, M.-H., npj 2D Materials and Applications 7 (2023) Article number: 64

Quantum transport simulation for TMF

Mreńca-Kolasińska, A., Chen, S.-C., and Liu, M.-H., npj 2D Materials and Applications 7 (2023) Article number: 64

 $6 \times 5 = 30$ transmission functions needed for $R_{61,54}$.

Ming-Hao Liu (NCKU Physics)

Seminar, AGH Krakow

17 May 2024

Spin-dependent TMF

Rao, Q. et al., Nature Communications 14 (2023)

・ロト ・回ト ・ヨト

36/59

э

Spin-dependent TMF

Rao, Q. et al., Nature Communications 14 (2023)

・ロト ・回 ・ ・ ヨ ・ ・ ヨ ・

э

Spin-dependent TMF

W REAL PROPERTY OF THE PROPERT

Rao, Q. et al., Nature Communications 14 (2023)

Ming-Hao Liu (NCKU Physics)

17 May 2024

$$\begin{split} \mathcal{H} &= \sum_{\langle i,j\rangle,\sigma} t c_{i\sigma}^{\dagger} c_{j\sigma} \qquad (\text{nearest} \\ &+ \sum_{i,\sigma} \xi_{o_i} \Delta c_{i\sigma}^{\dagger} c_{i\sigma} \\ &+ \frac{2i}{3} \sum_{\langle i,j\rangle} \sum_{\sigma,\sigma'} c_{i\sigma}^{\dagger} c_{j\sigma} \left[\lambda_R \left(\hat{\mathbf{s}} \times \hat{\mathbf{d}}_{ij} \right)_z \right]_{\sigma\sigma'} \\ &+ \frac{i}{3\sqrt{3}} \sum_{\langle \langle i,j\rangle \rangle} \sum_{\sigma,\sigma'} c_{i\sigma}^{\dagger} c_{j\sigma} \left[\lambda_I^{o_i} \nu_{ij} \hat{\mathbf{s}}_z \right]_{\sigma\sigma'} \qquad (\text{secc} \mathbf{c}_{i\sigma} \mathcal{H}_{\text{PIA}}) \end{split}$$

(nearest neighbor (nn) kinetic hopping)

(staggered onsite energy)

(nn Rashba hopping)

(second nn valley-Zeeman hopping)

(unimportant for low energy)

¹Gmitra, M., Kochan, D., Högl, P., and Fabian, J., Phys. Rev. B 93 (2016),155104

• By:

- Dropping PIA term
- Setting $\lambda_I^A = -\lambda_I^B = \lambda$ for simplicity

the low-energy dispersion is given by:

$$\begin{aligned} E_{\mu,\nu}(k) &= \mu \sqrt{\left(\Delta^2 + \lambda^2 + 2\lambda_R^2 + \hbar^2 v_F^2 k^2\right) + 2\nu \sqrt{\left(\lambda_R^2 - \lambda \Delta\right)^2 + \left(\lambda^2 + \lambda_R^2\right) \hbar^2 v_F^2 k^2}}\\ \mu,\nu &= \pm 1 \end{aligned}$$

- Δ will also be put to zero for simplicity
- Consistent with Zubair, M., Vasilopoulos, P., and Tahir, M., Phys. Rev. B 101 (2020)
- Following the literature:

$$\lambda \equiv \lambda_{so} \cos \theta_{so} \qquad (valley-Zeeman)$$
$$\lambda_R \equiv \lambda_{so} \sin \theta_{so} \qquad (Rashba)$$

Low-energy bands of graphene on TMDC (cont.)

Examples:

Quantum transport simulations

Rao, Q. et al., Nature Communications 14 (2023)

- Even though scaled, still too heavy!
- Smaller device simulated instead, but similar features obtained.

Ming-Hao Liu (NCKU Physics)

Seminar, AGH Krakow

17 May 2024

For purely Rashba:

42/59

• • • • • • • •

For purely Rashba:

• For valley Zeeman, staying in the same circle allowed.

• Therefore, Rashba SOC could be dominating.

Ming-Hao Liu (NCKU Physics)

Seminar, AGH Krakow

Graphene/hBN moiré pattern

$$\begin{split} \lambda &= \frac{1+\epsilon}{\sqrt{\epsilon^2 + 2(1+\epsilon)(1-\cos\phi)}} a \,, \qquad \theta = \arctan\frac{-\sin\phi}{1+\epsilon-\cos\phi} \\ \epsilon &\approx 1.81\% \quad (\text{lattice mismatch}) \end{split}$$

Yankowitz, M. et al., Nat. Phys. 8 (2012) 382; Moon, P. and Koshino, M., Phys. Rev. B 90 (2014) 155406

Graphene/hBN moiré model superlattice potential

Following Yankowitz, M. et al., Nat. Phys. 8 (2012) 382:

$$U_{ ext{moire}}(\mathbf{r}) = V \sum_{j=1,2,3} \cos\left(\mathbf{G}_j \cdot \mathbf{r}
ight) \,, \quad V = 0.06 \, ext{eV}$$

More advanced models: Kindermann, M., Uchoa, B., and Miller, D. L., Phys. Rev. B **86** (2012) 115415; Wallbank, J. R., Patel, A. A., Mucha-Kruczyński, M., Geim, A. K., and Fal'ko, V. I., Phys. Rev. B **87** (2013) 245408; Moon, P. and Koshino, M., Phys. Rev. B **90** (2014) 155406

Ming-Hao Liu (NCKU Physics)

Seminar, AGH Krakow

17 May 2024

Transport experiment vs transport simulation

Chen, S.-C., Kraft, R., Danneau, R., Richter, K., and Liu, M.-H., Commun. Phys. 3 (2020) 71

Simulation:

$$\phi = 0.9^{\circ}, \quad L = W = 500 \text{ nm}$$
$$G(E) = \frac{2e^2}{h}T(E), \quad V_{\text{bg}} = \frac{e}{\pi C} \left(\frac{E}{\hbar v_F}\right)^2 \text{sgn}(E)$$

Tight-binding transport vs continuum model

Chen, S.-C., Kraft, R., Danneau, R., Richter, K., and Liu, M.-H., Commun. Phys. 3 (2020) 71

Ming-Hao Liu (NCKU Physics)

17 May 2024

Kraft, R. et al., Phys. Rev. Lett. 125 (2020) 217701

æ

・ロン ・回 と ・ ヨン・

Kraft, R. et al., Phys. Rev. Lett. 125 (2020) 217701

æ

・ロン ・回 と ・ ヨン・

Kraft, R. et al., Phys. Rev. Lett. 125 (2020) 217701

Ming-Hao Liu (NGKO Physics	Ming-	Hao Liu	ע (NCK	U Phy	(sics)
----------------------------	-------	---------	--------	-------	--------

17 May 2024

æ

・ロト ・ 日 ・ ・ ヨ ・ ・ ヨ ・

Kraft, R. et al., Phys. Rev. Lett. 125 (2020) 217701

Ming-Hao Liu (NCKU Physics)

Seminar, AGH Krakow

Fabry-Pérot interference

Kraft, R. et al., Phys. Rev. Lett. 125 (2020) 217701

・ロ・・ (日・・ (日・・ (日・)

48/59

æ

Fabry-Pérot interference

Kraft, R. et al., Phys. Rev. Lett. 125 (2020) 217701

17 May 2024

・ロト ・回 ・ ・ ヨ ・ ・ ヨ ・

48/59

æ

3

Bilayer graphene

• Effective 4-band square lattice model

Ming-Hao Liu (NCKU Physics)

Seminar, AGH Krakow

17 May 2024 49/59

・ロト ・回 ト ・ ヨ ト ・ ヨ ト ・

æ

The model

Chen, S.-C., Mreńca-Kolasińska, A., and Liu, M.-H., (2024) arXiv:2403.03155

Hopping and onsite-energy matrices:

$$t_{x} = \frac{\hbar v_{F}}{2a} \begin{pmatrix} 0 & -i & 0 & 0 \\ -i & 0 & 0 & 0 \\ 0 & 0 & 0 & -i & 0 \end{pmatrix}, \quad t_{y} = \frac{\hbar v_{F}}{2a} \begin{pmatrix} 0 & 1 & 0 & 0 \\ -1 & 0 & 0 & 0 \\ 0 & 0 & 1 & 0 \end{pmatrix}, \quad \mathbb{U}_{n} = \begin{pmatrix} v_{n} + \frac{U_{n}}{2} & 0 & \gamma_{1} & 0 \\ 0 & v_{n} + \frac{U_{n}}{2} & 0 & 0 \\ \gamma_{1} & 0 & v_{n} - \frac{U_{n}}{2} & 0 \\ 0 & 0 & 0 & v_{n} - \frac{U_{n}}{2} \end{pmatrix}$$

The model

Chen, S.-C., Mreńca-Kolasińska, A., and Liu, M.-H., (2024) arXiv:2403.03155

Hopping and onsite-energy matrices:

$$t_{x} = \frac{\hbar v_{F}}{2a} \begin{pmatrix} 0 & -i & 0 & 0 \\ -i & 0 & 0 & 0 \\ 0 & 0 & 0 & -i \\ 0 & 0 & -i & 0 \end{pmatrix}, \quad t_{y} = \frac{\hbar v_{F}}{2a} \begin{pmatrix} 0 & 1 & 0 & 0 \\ -1 & 0 & 0 & 0 \\ 0 & 0 & 0 & -1 \\ 0 & 0 & 1 & 0 \end{pmatrix}, \quad \mathbb{U}_{n} = \begin{pmatrix} v_{n} + \frac{U_{n}}{2} & 0 & \gamma_{1} & 0 \\ 0 & v_{n} + \frac{U_{n}}{2} & 0 & 0 \\ \gamma_{1} & 0 & v_{n} - \frac{U_{n}}{2} & 0 \\ 0 & 0 & 0 & v_{n} - \frac{U_{n}}{2} \end{pmatrix}$$

Effective tight-binding Hamiltonian on a square lattice:

$$\mathcal{H} = \sum_{n} c_{n}^{\dagger} \mathbb{U}_{n} c_{n} + \sum_{\langle m,n \rangle} c_{m}^{\dagger} \mathbb{T}_{m \leftarrow n} c_{n}$$
$$\mathbb{T}_{m \leftarrow n} = \begin{cases} t_{x} \ , & \text{nearest-neighbor} \rightarrow \text{hopping} \\ t_{x}^{\dagger} \ , & \text{nearest-neighbor} \leftarrow \text{hopping} \\ t_{y} \ , & \text{nearest-neighbor} \uparrow \text{hopping} \\ t_{y}^{\dagger} \ , & \text{nearest-neighbor} \downarrow \text{hopping} \\ 0 \ , & \text{else} \end{cases}$$

・ロト ・日下・ ・ ヨト

Bulk band structure

For an infinitely extending lattice with translation invariance ($U_n = U, V_n = 0$), it can be shown:

$$E(k_x, k_y) = \pm \sqrt{t^2(\sin^2 k_x a + \sin^2 k_y a)} + \frac{U^2}{4} + \frac{\gamma_1^2}{2} \pm \frac{1}{2} \sqrt{\gamma_1^4 + 4t^2(\sin^2 k_x a + \sin^2 k_y a)(U^2 + \gamma_1^2)}$$

Bulk band structure

For an infinitely extending lattice with translation invariance ($U_n = U, V_n = 0$), it can be shown:

$$E(k_x, k_y) = \pm \sqrt{t^2(\sin^2 k_x a + \sin^2 k_y a) + \frac{U^2}{4} + \frac{\gamma_1^2}{2} \pm \frac{1}{2}\sqrt{\gamma_1^4 + 4t^2(\sin^2 k_x a + \sin^2 k_y a)(U^2 + \gamma_1^2)}}$$

Image: Image:

Bulk band structure

For an infinitely extending lattice with translation invariance ($U_n = U, V_n = 0$), it can be shown:

$$E(k_x, k_y) = \pm \sqrt{t^2(\sin^2 k_x a + \sin^2 k_y a) + \frac{U^2}{4} + \frac{\gamma_1^2}{2} \pm \frac{1}{2} \sqrt{\gamma_1^4 + 4t^2(\sin^2 k_x a + \sin^2 k_y a)(U^2 + \gamma_1^2)}}$$

From atomistic tight-binding model¹:

$$E(k) = \pm \sqrt{\frac{\gamma_1^2}{2} + \frac{U^2}{4}} + (\hbar v_F k)^2 \pm \sqrt{\frac{\gamma_1^4}{4} + (\gamma_1^2 + U^2)(\hbar v_F k)^2}$$

¹McCann, E. and Koshino, M., Rep. Prog. Phys. **76** (2013) 056503

Comparison of band structures

Effective model vs atomistic tight-binding model

Ming-Hao Liu (NCKU Physics)

17 May 2024

Ribbon band structures & magnetotransport

Chen, S.-C., Mreńca-Kolasińska, A., and Liu, M.-H., (2024) arXiv:2403.03155

A CONTRACTOR OF THE REAL OF TH

Chen, S.-C., Mreńca-Kolasińska, A., and Liu, M.-H., (2024) arXiv:2403.03155

 $L \approx 1.8 \,\mu m$, $W \approx 1.6 \,\mu m$

¹ Iwakiri, S. et al.,	Nano	Letters	22 ((2022)	6292
----------------------------------	------	---------	------	--------	------

Seminar, AGH Krakow

54/59

Chen, S.-C., Mreńca-Kolasińska, A., and Liu, M.-H., (2024) arXiv:2403.03155

¹Iwakiri, S. et al., Nano Letters 22 (2022) 6292

17 May 2024

Image: Image:

Chen, S.-C., Mreńca-Kolasińska, A., and Liu, M.-H., (2024) arXiv:2403.03155

¹Iwakiri, S. et al., Nano Letters 22 (2022) 6292

Chen, S.-C., Mreńca-Kolasińska, A., and Liu, M.-H., (2024) arXiv:2403.03155

¹Iwakiri, S. et al., Nano Letters 22 (2022) 6292

17 May 2024

Image: Image:

Lieb lattice

Ming-Hao Liu (NCKU Physics)

Seminar, AGH Krakow

17 May 2024

< □ > < □ > < □ > < □ > < □ > = Ξ

Lieb lattice

Nearest neighbor hoppings only.

Ming-Hao	Liu	(NCKU	Physics)
----------	-----	-------	----------

Seminar, AGH Krakow

< 3 >

・ロト ・回ト ・ヨト

æ

Lieb lattice

Up to second nearest neighbor hoppings.

Ming-Hao	Liu (NCKU	Physics)
----------	-------	------	----------

Seminar, AGH Krakow

17 May 2024

ヘロト ヘヨト ヘヨト

56/59

문 🛌 문

Transmission across pn junctions

Kleing tunneling in graphene vs super-Klein tunneling in Lieb lattice

Ming-Hao Liu (NCKU Physics)

17 May 2024

Transmission across pn junctions

Kleing tunneling in graphene vs super-Klein tunneling in Lieb lattice

Ming-Hao Liu (NCKU Physics)

17 May 2024

Summary

193¹

Basics

- Landauer-Büttiker formalism
- Real-space Green's function method
- Lead self-energy
- Peierls substitution
- Gauge transformation for vector potential
- Semiclassical motion of Bloch electrons

Applications

- 2DEG & MoS₂
- Graphene
- Bilayer graphene
- Lieb lattice

Acknowledgments

Special thanks: Aitor Garcia-Ruiz, Alina Mreńca-Kolasińska, Szu-Chao Chen, Wun-Hao Kang

- Financial: National Science and Technology Council of Taiwan
- Computational: National Center for High-performance Computing
- Prof. Dr. Klaus Richter for hosting my sabbatical in Uni Regensburg