

Badania teoretyczne struktury elektronowej i zjawisk elektrochemicznych w wybranych materiałach katodowych baterii jonowych

Michał Rybski Seminarium WFiIS Katedra Fizyki Materii Skondensowanej

Akademia Górniczo-Hutnicza im. Stanisława Staszica w Krakowie AGH University of Krakow

08.03.2024

- 1. Baterie Li-ion i Na-ion
- 2. Metoda funkcji Greena: KKR, KKR-CPA.
- 3. Omówienie otrzymanych wyników:
 - 1. $Li_x Ni_{0.9-y} Co_y Mn_{0.1}O_2$,
 - 2. $NaFe_{0.3}Co_{0.7}O_2$, $NaFe_{1-y}Mn_{0y}O_2$, $Na_{0.67}Mg_{1/3}Mn_{2/3}O_2$
- 4. Podsumowanie

Magazynowanie energii elektrycznej

Source: Our World in Data based on Vaclav Smil (2017) and BP Statistical Review of World Energy OurWorldInData.org/energy • CC BY

https://ourworldindata.org/grapher/globalenergy-substitution?facet=none&uniformYAxis=0

Historia akumulatorów elektrochemicznych

"Bateria z Bagdadu" – III w. p.n.e

Luigi Galvani – XVIII w.

Alessandro Volta - XVIII w.

Georges Leclanché 1886

Bateria Sony Li-ion, 1991r.

Rozwój baterii Li-ion oraz Na-ion

LiAl(SiO₃)₂

Diagram energetyczny - "okno elektrochemiczne"

EA

EF

Stabilna pracę można uzyskać jedynie w przypadku odpowiedniego wzajemnego położenia poziomów energetycznych anody, katody oraz elektrolitu.

Wysokie napięcie pracy ogniwa zostaje osiągnięte, jeżeli poziomy LUMO i HOMO elektrolitu są rozdzielone dużą przerwą energetyczną E_g

Poziomy energetyczne związane z reakcjami elektrodowymi powinny znajdować się odpowiednio blisko, ale poniżej LUMO w przypadku anody, oraz powyżej poziomu HOMO w przypadku katody.

K. Walczak, Polianionowe materiały katodowe dla ogniw typu Na-ion

Projektowanie nowoczesnych materiałów bateryjnych

Wymagania:

- wysokie przewodnictwo jonowo-elektronowe
- możliwe najwyższe napięcie katody
- -wysoka gęstość ładunkowa, stabilność chemiczna
- -łatwość i niski koszt wytworzenia
- -brak szkodliwego wpływu na środowisko

Elektronowy model interkalacji

$$\mu_{Li}(katoda) - \mu_{Li}(anoda) = -nFE_{SEM}$$

$$\mu_{Li}(katoda) = -eE_{SEM}$$

$$\Delta\mu_{Li}(katoda) = \mu_{Li^+} - \mu_{e^-}$$

$$\Delta\mu_{Li^+} = k_BTln \frac{[Li^+]_f}{[Li^+]_i}$$

$$k_BT \sim 0.025eV \quad \Delta\mu_{Li^+} << \Delta\mu_{e^-}$$

$$\DeltaSEM \approx \Delta\mu_{e^-} \approx \Delta E_F$$
N(6)
$$\int_{\mathbb{R}} \int_{\mathbb{R}} \int_{\mathbb{R$$

XLi

zmiany SEM ogniwa są skorelowane ze zmianami elektronowego potencjału chemicznego, co w rezultacie łączy się z funkcją gęstości stanów elektronowych

Metoda KKR-CPA

Główną ideą modelu CPA jest znalezienie sposobu, aby przywrócić dyskretną symetrię translacyjną układu niezaburzonego

warunek CPA:

$$x\left(v_{i}^{A}-v_{i}^{CPA}\right)\left[\hat{1}-\hat{G}^{CPA}\left(v_{i}^{A}-v_{i}^{CPA}\right)\right]^{-1}+y\left(v_{i}^{B}-v_{i}^{CPA}\right)\left[\hat{1}-\hat{G}^{CPA}\left(v_{i}^{B}-v_{i}^{CPA}\right)\right]^{-1}=0,$$

•Nieporządek chemiczny: Li_xNi_{1-y-z}Co_yMn_zO₂ - Li-vac, Co-Mn-Ni, O-vac

•Nieporządek magnetyczny: stan paramagnetyczny obliczenia KKR-CPA-DLM. W szczególności dla układu

NaFe_{0.3}Co_{0.7}O₂O obliczenia wymagają rozróżnienia 4 atomów: Fe \uparrow , Fe \downarrow , Co \uparrow , Co \downarrow

Stopa, Kaprzyk, Tobola, J.Phys.CM (2004) Bansil, Kaprzyk, Mijnarends, Tobola, Phys. Rev. B (1999) Kaprzyk et al. Phys. Rev. B (1990)

Struktura elektronowa LiCoO₂

Struktura elektronowa LiCoO₂

E⁻⁴ - E_F (eV)

0

2

-6

AGH

UCZELNIA BADAWCZA

J. Molenda, A. Milewska, W. Zajac, M. Rybski, J. Tobola, Phys. Chem. Chem. Phys., 19 (2017) 25697

agh.edu.pl

J. Molenda, A. Milewska, W. Zajac, M. Rybski, J. Tobola, Phys. Chem. Chem. Phys., 19 (2017) 25697

UCZELNI BADAWCZA

Układy: Li_xNi_{0.65}Co_{0.25}Mn_{0.1}O₂ oraz Li_xNi_{0.55}Co_{0.35}Mn_{0.1}O₂

0.25 Mn_{0.1}O₂ oraz Li_xNi_{0.55}CO_{0.35} Mn_{0.1}O₂ 0.65

0.8

1

---- p-O

mały wkład do DOS-u od p-O dla dużych stężeń litu

radv

J. Molenda, A. Milewska, M. Rybski, L. Lu, W. Zając, S. Gerasin, J. Tobola, Physica Status Solidi (a), vol. 217, pp. 1900951, 2020.

Układ NaFe_{0.3}Co_{0.7}O₂

J. Molenda, A. Plewa, A. Kulka, Ł. Kondracki, K. Walczak, A. Milewska, M. Rybski, L. Lu, J. Tobola, Journal of Power Sources, vol. 449, pp. 227471, 2020

Układ Nale_{0 3}Co_{0 7}O₂

Układ $Na_x Fe_{1-y} Mn_y O_2$

K. Walczak, K. Redel, R. Idczak, R. Konieczny, K. Idczak, V.H. Tran, A. Plewa, M.Ziąbka, M. Rybski, J. Tobola, J. Molenda, Energy Technology, 2022

UCZELNIA BADAWCZA

Układ NaMnO₂ oraz Na_{0.67}Mg_{1/3}Mn_{2/3}O₂

G. Wazny, K. Walczak, J. Tobola, M. Rybski, W. Zając, P. Czaja, M. Wolczko, J. Płotek, J. Molenda, Energy Technology, 2023

Układ NaMnO₂ oraz Na_{0.67}Mg_{1/3}Mn_{2/3}O₂

W prowadzonych badaniach podjęto udaną próbę skorelowania uzyskanych wyników teoretycznych z właściwościami elektrochemicznymi badanych związków katodowych, analizując w szczególności charakter krzywej ładowania, elektronowe własności transportowe oraz stabilność strukturalną. Zaproponowane podejście do interpretacji charakterystyk elektrochemicznych materiałów katodowych na gruncie obliczeń *ab initio*, może stanowić efektywne

narzędzie teoretyczne przy projektowaniu ekologicznych (selektywny dobór pierwiastków) i bezpiecznych (stabilność w procesie deinterkalacji) materiałów stosowanych w nowoczesnych ogniwach jonowych.

We współpracy z :

WEiP, AGH:

J. Molenda, A. Milewska, D. Baster, L. Kondracki, B. Gędziowski, K. Walczak, G. Ważny, W. Zając. Instytut Fizyki Doświadczalnej, UW

R. Idczak, R. Konieczny, K. Idczak. WFiIS AGH

J. Toboła