

Spektrometria mas jonów wtórnych (SIMS): nowe możliwości badawcze

Andrzej Bernasik

Katedra Fizyki Materii Skondensowanej Wydział Fizyki i Informatyki Stosowanej

Kraków, 15.04.2011

"when primary Canalstrahlen strike against a plate of metal, secondary rays are produced. These ... are for the most part un-charged, but a small fraction carry a positive charge"

J.J. Thomson, "Rays of positive electricity", Phil. Mag. 20 (1910) 752-767

Spektrometria mas

Techniki jonizacji

El	jonizacja elektronami Electron Impact Ionization					
CI	jonizacja chemiczna Chemical Ionization					
ICP	plazma wzbudzana indukcyjnie Inductively Coupled Plasma					
ESI	elektrorozpylanie Electrospray Ionization					
TE	termorozpylanie <i>Termospray</i>					
LD	desorpcja laserowa Laser Desorption					
MALDI	desorpcaj laserowa z udziałem matrycy					
	Matrix-Assisted Laser Desorption Ionization					
FAB	bombardowanie szybkimi atomami Fast Atom Bombardment					
GD	wyładowanie jarzeniowe Glow Discharge					
SIMS	spektrometria mas jonów wtórnych					
	Secondary Ion Mass Spectrometry					

Metody badań cienkich warstw

metody analizy powierzchni

- SPM Scanning Probe MicroscopyXPS X-ray Photoelectron Spectrosco
- XPS X-ray Photoelectron Spectroscopy
- **sSIMS** static Secondary Ion Mass Spectrometry
- **AES** Auger Electron Spectroscopy
- **LEED** Low Energy Electron Diffraction
- **LEIS** Low Energy Ion Scattering

metody profilowania głębokościowego

metody oparte na zjawisku rozpraszania

- ELLI Ellipsometry
- XR X-Ray Reflectivity
- **NR** Neutron Reflectivity
- SANS Small Angle Neutron Scattering

metody jonowe

- **FRES** Forward Recoil Spectrometry
- **NRA** Nuclear Reaction Analysis
- **RBS** Rutherford Backscattering Spectrometry
- dSIMS dynamic Secondary Ion Mass Spectrometry

Metody badań cienkich warstw

AES - Auger Electron Spectroscopy AFM - Atomic Force Microscopy **APFIM - Atom Probe Field Ion Microscopy ELLI - Ellipsometry FRES - Forward Recoil Spectrometry** LEIS - Low Energy Ion Scattering NR - Neutron Reflectivity NRA - Nuclear Reaction Analysis **RBS** - Rutherford Back Scattering SEM - Scanning Electron Microscopy SIMS - Secondary Ion Mass Spectrometry s-static, d-dynamic **TEM - Transmission Electron** Microscopy **XPS - X-ray Photoelectron Spectroscopy** XR - X-ray Reflectivity

Spektrometria mas jonów wtórnych (SIMS)

Spektrometria mas jonów wtórnych (SIMS)

Równanie SIMS

$$\mathbf{I}_{A} = \mathbf{I}_{P} \cdot \mathbf{T}_{A} \cdot \mathbf{Y}_{tot} \cdot \boldsymbol{\alpha}_{A}^{q} \cdot \mathbf{C}_{A}$$

$$\begin{split} &I_A - \text{natężenie jonów wtórnych} \\ &I_B - \text{natężenie jonów pierwotnych} \\ &T_A - \text{transmisja spektrometru} \\ &Y_{tot} - \text{całkowita wydajność rozpylania jonowego} \\ &\alpha_A{}^q - \text{współczynnik jonizacji} \\ &C_A - \text{stężenie pierwiastka A} \end{split}$$

$$Y_{tot} = \frac{N_S}{N_P}$$

- liczba jonów wtórnych przypadająca na jon pierwotny

Jonowa wydajność rozpylania

- 1. Wpływ otoczenia chemicznego na prawdopodobieństwo jonizacji: efekt matrycy.
- 2. Wykorzystanie nadmuchu tlenu na powierzchnię dla podniesienia prawdopodobieństwa jonizacji kationów

SIMS statyczny

Pokrycie powierzchni cząsteczkami M:

 $\theta_{\rm M}(F) = \theta_0 e^{-\sigma F}$

- F dawka wiązki pierwotnej całkowita liczba jonów pierwotnych na jednostkę powierzchni,
- σ disappearance cross section parametr odpowiadający wielkość powierzchni zdefektowanej jonem pierwotnym; zależy od rodzaju analizowanego jonu (klastera) wtórnego, materiału tarczy oraz rodzaju i energii jonu pierwotnego

Zakres statycznego modu pracy metody SIMS : $\sigma F << 1$

 $F_{stat} < 10^{13}$ jonów/cm² dla materiałów krystalicznych $F_{stat} < 10^{11}$ jonów/cm² dla materiałów polimerowych

SIMS dynamiczny

Zdolność rozdzielcza określona przez stała λ :

$$I_A(z) = I_{0A} \exp\left(-\frac{z}{\lambda}\right)$$

 $\Delta z \approx 1.68 \cdot \lambda$

Całkowita zdolność rozdzielcza Δz

$$z = \sqrt{\sum_{i} \left(\Delta z_{i}^{2} \right)}$$

Wpływ zjawisk towarzyszących rozpylaniu jonowemu na wartość zdolności rozdzielczej względem głębokości

mieszanie balistyczne:	$\Delta z_m = \text{const dla } z > z_{st}$
rozpylanie preferencyjne:	$\Delta z_p = \text{const dla } z > z_{st}$
niejednorodności wiązki pierwotnej:	$\Delta z_{w} \sim z$
zmiana topografii powierzchni:	$\Delta z_t \sim z^{1/2} \Delta z$
przyspieszona dyfuzja i segregacja:	$\Delta z_{d} = f(j_{p}, E_{p}, D_{b}, D_{s}, t \dots)$

z_{st} – grubość warstwy odpowiadającej czasowi potrzebnemu na osiągnięcie stanu stacjonarnego rozpylania

Ta₂O₅ o grubości 30nm lub 100nm na powierzchni Ta:

materiał do kalibracji szybkości rozpylania stosowanych w metodach XPS, AES, SIMS (Reference Materials, NPL UK).

Badania polimerowych układów wielowarstwowych: wiązka pierwotna: Ga+

Podwyższenie głębokościowej zdolności rozdzielczej:

- rotacja próbki,
- chłodzenie próbki,
- mały kąt padania wiązki pierwotnej.

Głębokościowa zdolność rozdzielcza wyznaczona metodą AES dla wielowarstwowej próbki Ni/Cr rozpylanej jonami Ar⁺.

S.Hofmann, Progress in Surface Science, 36 (1991) 35.

Kratery

materiał: $ZrO_2+8\%mol Y_2O_3$ rozpylanie: Ga+, 25 keV

materiał: SiO₂ / stal rozpylanie: Ar+, 4 keV

Spektrometry mas stosowane w badaniach metodą SIMS

spektrometr	rozdzielczość masowa m/Δm	zakres mas	transmisja	tryb detekcji	ekstrakcja jonów wtórnych
kwadrupolowy	10 ^{2 -} 10 ³	< 10 ³	0.01 - 0.1	sekwencyjny	~10 V
magnetyczny	> 10 ⁴	> 10 ⁴	0.1 - 1	sekwencyjny równoległy	~ 5 kV
czasu przelotu				równoległy	

Limit detekcji

$$\rho_{i} = RFS \frac{I_{i}}{I_{M}}$$

RFS - względny współczynnik czułości ρ - gęstość mierzonego pierwiastka i I_i - natężenie jonów pierwiastka i I_M - natężenie jonów matrycy

Wiązka jonów pierwotnych: O₂⁺ o energii 3keV Spektrometr masowy z sektorem magnetycznym (CAMECA)

Matryca	Pierwiastek	Limit detekcji [at/cm ³]		
	Н	7·10 ¹⁶		
	C	3·10 ¹⁶		
	N	5·10 ¹⁴		
Si	0	6·10 ¹⁶		
5·10 ²²	В	3·10 ¹³		
at/cm3	F	5·10 ¹⁵		
	AI	1·10 ¹⁴		
	Р	5·10 ¹³		
	Cr	2·10 ¹³		
	Fe	5·10 ¹⁴		
	Ni	3·10 ¹⁴		
	Cu	8·10 ¹⁴		
	As	5·10 ¹³		
	Aa	5·10 ¹⁴		
	Pb	1·10 ¹⁴		
GaAs	Si	5·10 ¹⁴		
	Zn	2·10 ¹⁵		
InP	Zn	1.10 ¹³		

G. Gillen et al., SIMSXI Proc., Wiley, 1998

R. G. Wilson, F. A. Stevie, C. W. Magee, SIMS, Wiley 1989

RSF - względny współczynnik czułości

Masowa zdolność rozdzielcza

ION-TOF GmbH, Münster, Germany

Masowa zdolność rozdzielcza

Cholesterol na podłożu Ag

Cholesterol

 $C_{27}H_{46}O$

M_w=386

M. Skalska, R. Pędrys

Działa jonowe

- Wiązki jonów jedno atomowych:
- Ar+, Xe+,
- O2+ zwiększa emisję jonów dodatnich
- **Ga**⁺ bardzo dobre ogniskowanie
- Cs⁺ zwiększa emisję jonów ujemnych, słabe ogniskowanie, analiza MCs⁺ zmniejsza efekt matrycy,

Wiązki jonów ciężkich lub wieloatomowych

(zwiększona emisja dużych cząstek, mniejsze mieszanie balistyczne):

SF₅⁺,

Au_n⁺ (n=1-7, 400),

 $\mathbf{Bi_n}^+$ (n=1-7) - bardzo dobre ogniskowanie, duża wydajność jonów wtórnych $\mathbf{C_{60}}^+$ - analiza materiałów organicznych

Ar_n⁺ (n=500-2000),

Z. Postawa, et. al, Anal. Chem. 75 (2003) 4402; Surf. Interface Anal. 43 (2011) 12

Argonowe działo jonowe

I. Yamada et al., Mat. Sci. Eng. R 34 (2001) 231, J. L. S. Lee et al., Anal. Chem. 82 (2010) 98

Korzyści wynikające ze stosowania wiązki wieloatomowej:

- wzrost wydajności rozpylania, zwłaszcza dla materiałów biologicznych,
- wzrost jonowej wydajności rozpylania, zwłaszcza dla dużych mas,
- redukcja chropowatości powierzchni,
- redukcja mieszania balistycznego,
- wzrost czułości powierzchniowej
 i zwiększenie rozdzielczości głębokościowej,
- możliwe profilowanie z wykorzystaniem pomiaru wieloatomowych jonów wtórnych.

F. Kollmer, Appl. Surf. Sci. 231-232 (2004) 153

Powierzchniowa zdolność rozdzielcza

Charakterystyka wiązki pierwotnej uzyskana na urządzeniu TOF-SIMS IV (IONTOF)

	Ga+	Au+	Au ₃ +	Bi ₃ ²⁺	C ₆₀ +	C ₆₀ +
masa [Da]	69	197	591	627	720	720
energia [keV]	25	25	25	50	10	20
średnica wiązki [nm]	100	150	200	100	3000	3000
czas impulsu [ns]	0.6	0.7	1.2	0.7	1.4	1.1

F. Kollmer, Appl. Surf. Sci. 231-232 (2004) 153

Dwuwiązkowy spektrometr TOF – SIMS

Laboratorium Inżynierii Analizy Nanowarstw i Biomedycznych Struktur Molekularnych TOF-SIMS Instytut Fizyki UJ

IONTOF 5, ION-TOF GmbH,

Dwuwiązkowa analiza TOF - SIMS

ION-TOF GmbH, Münster, Germany

Dwuwiązkowa analiza TOF - SIMS: tworzenie obrazów 4D

8x (Al 20nm / Fe 20nm) na podłożu Si

Parametry pomiaru

analiza: Bi⁺, 30 keV, 0.46 pA, 80 x $80\mu m^2$, 7x10¹³ jon/cm² rozpylanie: O₂⁺, 1 keV, 200nA, 200 x 200 μm^2 , 5x10¹⁸ jon/cm²

P3AT + PS na podłożu Si modyfikowanym warstwą SAM

Parametry pomiaru analiza: Bi_3^{2+} , 60 keV, 0.09 pA, 100 x 100µm², 2x10¹³ jon/cm²

rozpylanie: Cs⁺, 0.5 keV, 35nA, 300 x 300µm², 4.7x10¹⁷ jon/cm²

Analiza pierwiastków

- identyfikacja składu poprzez analizą wybranych linii widma wskazujących obecność pierwiastka (izotopu)
- konieczność stosowania znacznika

Analiza klasterów wieloatomowych

- wyznaczenie korelacji pomiędzy grupami linii widma
- interpretacja pochodzenia grup poprzez dyskusję składu i stopnia jonizacji klasterów

spectrum A: scans 1-10

widma jonów dodatnich

spectrum B: scans 90-100

Wielowymiarowa analiza statystyczna

metody wykorzystywane w interpretacji widm otrzymanych metodą SIMS (kolejność wg liczby publikacji w ostatnich latach):

- PCA Principal Component Analysis
- MCR Multivariate Curve Resolution
- PLS Practical Least Squares Regression
- DFA Detrended Fluctuation Analysis
- ANNs Artificial Neural Networks

Analiza widm na podstawie składu chemicznego

Wielowymiarowa analiza widm

Wyznaczanie 'scores' i 'loadings':

- normalizacja
- wyznaczenie wartości własnych i wektorów własnych macierzy kowariancji
- redukcja liczby wektorów własnych

- X macierz wyników
- T (*scores*) macierz udziału kierunków głównych
- P (*loadings*) macierz charakteru kierunków głównych

Czynniki główne (PC) mogą wskazywać na:

- różnicę składu chemicznego,
- efekt matrycy,

 $\mathbf{X} = \mathbf{T} \mathbf{P}$

- topografię próbki (efekt cieniowania),
- efekt ładowanie próbki,
- warunki pracy detektora (czas martwy, nasycenie).

Osadzanie biotyny na podłożu

Identyfikacja makrocząsteczek metodą PCA

Proteiny: BSA - albumina(66-69 kDa), α-amylaza (54-57 kDa), lizozym (14 kDa)

Analiza obrazu metodą PCA

Kontrast pomiędzy podłożem a badanym materiałem.

Kontrast wynikający z różnicy składu chemicznego badanej powierzchni 0.6 B 1000 C 0.4 0 0.2 -1000 -2000 -0.2 -3000 3000 0.8 Е ıВ 0.6

0.4

0.2

2000

1000

58%

4

2 Factor

95%

4

c

Factor

.90%

с.

Factor 4

25%

сi

Factor 5

J.L.S. Lee et al., Surf. Interface Anal., 41 (2009) 653

Mass (arb. scale)

Podsumowanie

Metoda SIMS służy do analizy składu powierzchni i profilowania głębokościowego materiałów organicznych i nieorganicznych.

Zastosowanie:

- medycyna i biotechnologa (bioanaliza),
- nauka o polimerach,
- geochemia i kosmochemia,
- archeologia,
- badania nanomateriałów,
- mikroelektronika.

Podziękowanie

prof. dr hab. Andrzej Budkowski dr Jakub Rysz mgr Kamil Awsiuk mgr Joanna Zemła

mgr inż. Mateusz Marzec

AGH

dr hab. Roman Pędrys

stud. Magdalena Skalska

AGH

Dziękuję za uwagę