

T. Stobiecki Katedra Elektroniki AGH

M. Czapkiewicz, J. Kanak, W. Skowroński (doktorant), Z. Szklarski, P. Wiśniowski, J. Wrona (Singulus), A. Zaleski (doktorant)

Swiss-PL NANOSPIN Nanoscale spin torque devices for spin electronics

Tomasz Stobiecki, AGH WFiIS, Kraków 1.04.2011

SPINSWITCH

ISPIN LAB

AGH Mapa drogowa spintroniki

- co nowego w urządzeniach
- głowice TMR/HDD
- pamięci operacyjne STT-RAM
- nano-oscylatory mikrofalowe STO
- Technologia magnetycznych nano-złącz tunelowych (MTJ)
- nanoszenie układu wielowarstwowego sputtering
- elektronowa litografia
- Spin transfer torque
- Przełączanie prądem spinowo-spolaryzowanych elektronów (CIMS)
- ST- oscylator
- Podsumowanie
- Projekt SPINLAB

Semiconductor I and Integrated C

ŁADUNEK

Metal Spintronics MRAM + Circuit Technology

SPINTRONICS

gnetic Recording Magnetic Sensors

SPIN

spin@

Semiconductor Spintronics

NANOTECHNOLOGIA

Assumption: tunneling of up- and down-spin electrons are two independent processes, so the conductance occurs in the two independent spin channels.

$$MR = (R_{AP} - R_{P})/R_{P} = 2P_{1}P_{2}/(1 - P_{1}P_{2}), P_{\alpha} = \frac{(D_{\alpha}\uparrow(E_{F}) - D_{\alpha}\downarrow(E_{F}))}{(D_{\alpha}\uparrow(E_{F}) + D_{\alpha}\downarrow(E_{F}))}, \alpha = 1, 2.$$

Spin Polarization *P*

Fig. 2. Nonvolatile RAM application in IT equipment.

R. Takemura et al. IEEE JOURNAL OF SOLID-STATE CIRCUITS, VOL. 45, NO. 4, APRIL 2010

No more, MR≈10%

MRAM

Magneto-Resistance

Magnetoresistive Random Access Memory (MRAM)

Cross-section structure

Freescale's 4 Mbit-MRAM based on Al-O MTJs Volume production (2006)

High-density MRAM is difficult to develop.

Vord line Bit line Current magnetic field

2008 – japoński satelita był wyposażony w pamięć MRAM w miejsce FLASH

STT Write Mechanism

Spin-transfer torque writing

- Uses spin-polarized current instead of magnetic field to switch magnetization of storage layer
- Has low power consumption and excellent scalability

Tomasz Stobiecki, AGH WFilS, Kraków 1.04.2011

Pioneer in STT-RAM Technolog

Key Advantages over conventional MRAM:

- High scalability
- Simpler architecture
- Faster operation
- Excellent write selectivity <- Localized spin-injection within cell
 - Write current scales down with cell size <--
- Low power consumption <- Low write current (<100 μ A)
 - <— No write line, no by-pass line and no cladding</p>
 - <- Multibit (parallel) writing compatible

© 2010 Grandis Corporation

spin LAB

MRAM example

- Existing MRAM up to 64 MB capacity
- Obstacle critical current density

Toshiba, ISSCC conference (2010)

Pioneer in STT-RAM Technology

Memory Technology Comparison

	SRAM	DRAM	Flash (NOR)	Flash (NAND)	FeRAM	MRAM	PRAM	RRAM	STT- RAM
Non-volatile	No	No	Yes	Yes	Yes	Yes	Yes	Yes	Yes
Cell size (F ²)	50–120	6–10	10	5	15–34	16-40	6–12	6–10	6–20
Read time (ns)	1–100	30	10	50	2080	3–20	20-50	10–50	2–20
Write / Erase time (ns)	1–100	15	1 μs / 10 ms	1 ms / 0.1 ms	50 / 50	3–20	50 / 120	10–50	2–20
Endurance	10 ¹⁶	10 ¹⁶	10 ⁵	10 ⁵	10 ¹²	>10 ¹⁵	10 ⁸	10 ⁸	>1015
Write power	Low	Low	Very high	Very high	Low	High	Low	Low	Low
Other power consumption	Current leakage	Refresh current	None	None	None	None	None	None	None
High voltage required	No	3 V	6-8 V	16–20 V	2–3∨	3 V	1.5–3 V	1.5–3 V	<1.5 V
	Existing products						Prototype		

C Katedra Elektroniki, Akademia Górniczo-Hutnicza **MRAM vs. Semiconductor RAMs** AGH STT-RAM Cell $6 F^2$ **Bit line** MTJ Gate ource Si substrate Tech \$80 B Node 14F² 54 nm \$25 B Cell Size NAND Flash Speed Processor \$50 B 50 ns Marke Cache 20 ns \$15 B 8F² Market 45 nm **Automotive MCUs** DRAM 10 ns \$8 B 2 ns 6F² Microcontrollers (Meus 32 nm 0 4F² \$10 B \$0.5 B

 \mathbf{O}

2016

4/8 Gb

NOR, PSRAM, Mobile RAM

Density

2014

2/4 Gb

2012

1 Gb

2010

64 Mb

22 nm

LAB

Intensified Worldwide Interest in STT-RAM Pioneer in STT-RAM Technology Jun. 2009: NEC tips new MRAM technology using STT at VLSI conference, NEC expects it to be scalable beyond 55 nm process Oct. 2009: Crocus Technology announces it will transition to STT-RAM from its existing heat-assisted TAS-MRAM in 2010 Nov. 2009: Korean Government updates on progress of \$50M SAMSUNG STT-RAM program with Samsung and Hynix, installs 300 mm STT-RAM facility at Hanyang University TSMC and Qualcomm describe 45 nm low power Dec. 2009: embedded STT-RAM process and design at IEDM Dec. 2009: Also at IEDM, Hitachi & Tohoku University present MTJ SPICE model, and Intel presents design space study HITACHI intel and requirements for STT-RAM in embedded applications Inspire the Next Dec. 2009: France launches €4.2M SPIN project with 11 partners including LETI, Spintec & Crocus, one of project goals is to develop magnetic FPGAs Jan. 2010: Everspin introduces 1 Mb MRAM for RAID storage applications EVERSPIN Jan. 2010: Toshiba achieves 9 µA switching current in perpendicular STT-RAM TOSHIBA Toshiba describes a 64 Mb STT-RAM using perpendicular MTJs Feb. 2010: and 65 nm CMOS at ISSCC conference, Fujitsu also presents a paper

© 2010 Grandis Corporation

Tomasz Stobiecki, AGH WFilS, Kraków 1.04.2011

23

4/12/2010

Cele

Optymalizacja struktury warstwowej magnetycznego złącza tunelowego pod kątem zjawiska spinowego transferu momentu pędu (STT).

Wytworzenie tunelowego magnetycznego nanozłącza dla zastosowań na komórki pamięci STT-RAM i ST-oscylatory.

Table 3

MR ratios up to 1.000% at RT S. Ikeda et al., Appl. Phys. Lett., 93, 082508 (2008). Jiang et al., Appl. Phys. Express, 2, 083002 (2009). RA, TMR and Hin of MTJs with Al-O and MgO barrier

RA-P and RA-AR were measured in parallel and antiparallel orientation of magnetizations of free and pinned layer, respectively.

P. Wisniowski, J. Kanak, et al. J. Appl. Phys. 100 (2006) 013906 J. Kanak, et al. Vacuum 82 (2008)1057

Tomasz Stobiecki, AGH WFilS, Kraków 1.04.2011

Ispin LAB

Barrier quality

XRD – rocking curve

Sputtering system (uni lab)

H. Maehara et al. Applied Physics Express 4 (2011) 033002

Mapa drogowa spintroniki

co nowego w urządzeniach

• głowice TMR/HDD

AGH

- pamięci operacyjne STT-RAM
- nano-oscylatory mikrofalowe STO
- Technologia magnetycznych nano-złącz tunelowych (MTJ)
- nanoszenie układu wielowarstwowego sputtering
- elektronowa litografia

Spin transfer torque

- Przełączanie prądem spinowo spolaryzowanych elektronów (CIMS)
- ST- oscylator

Podsumowanie

Projekt SPINLAB

Sputtering deposition

Singulus TIMARIS

J. Wrona

Oxidation Module

Low Energy Remote Atomic Plasma Oxidation; Natural Oxidation; Soft Energy Surface Treatment

Soft-Etch Module (PreClean, Surface Treatment)

Cassette Module (according to Customer request)

Multi Target Module

Top: Target Drum with 10 rectangular cathodes; Drum design ensures easy maintenance; *Bottom:* Main part of the chamber containing LDD equipment

Transport Module (UHV wafer handler)

Ultra – High – Vacuum Design: High Throughput (e.g. MRAM): High Effective Up-time: Base Pressure ≤ 5*10⁻⁹ Torr (Deposition Chamber)
9 Wafer/Hour (1 Depo-Module)
18 Wafer/Hour (2 Depo-Module)

Courtesy of

Linear Dynamic Deposition (LDD)

Advantages:

- •Short Target-Substrate Distance:
 - Good thickness uniformity and coating efficiency
- •Thickness adjusted by wafer speed:
 - Precisely control & repeatability
- Leakage field of cathode parallel to wafer travel direction:
 - Ideal symmetry for magnetic film applications
- Stationary Aligning Magnetic Field (AMF):
 - AMF can be optimized with cathode

Targets

Wafer

AGH

Target Drum

Wedge technology

J. Wrona, T.Stobiecki et al. J.Phys. Conf. Ser. 200, (2010).

Multilayer stack

spin UAB

- MTJ stack deposited in Singulus
- MgO wedge thickness: 0.6 nm up to 1nm (slope 0.017 nm/cm)

Wafer characterization microstructure – XRD, AFM

• electrical, magnetic: TMR, RA, MOKE-loops

Nanopillars

2 step e-beam lithography,ion etching, lift-off

W. Skowroński

TMR & RA vs. MgO thickness

Mapa drogowa spintroniki

co nowego w urządzeniach

• głowice TMR/HDD

AGH

- pamięci operacyjne STT-RAM
- nano-oscylatory mikrofalowe STO

Technologia magnetycznych nano-złącz tunelowych (MTJ)
 nanoszenie układu wielowarstwowego - sputtering

elektronowa litografia\

Spin transfer torque

Przełączanie prądem spinowo spolaryzowanych elektronów (CIMS)

ST- oscylotor

Podsumowanie

Projekt SPINLAB

ST tends to align M (anti-)parallel to P

STT – CIMS

Spin Transfer Torque→ Curent Induced Magnetization Switching

Moment in an applied field along z with no anisotropy

I = **I**_{Critical}

I= 7 mA, P=0.7 α=0.01

Static measurements

- Standard TMR, I(V), dI/dV in magnetic field using quasi-DC methods
- CIMS down to 1 ms length pulses

CIMS measurements

a sping Guide

Nanopillar with coplanar wave guide

Tomasz Stobiecki, AGH WFilS, Kraków 1.04.2011

Mag = 389.47 K X

EHT = 10.00 kV

Signal A = InLens Date :17 Nov 2008 Time :15:43

Measurement setup for spin dynamics

spin LAB

FIG. 1: ST-FMR spectra measured with different external magnetic field applied.

W. Skowroński

- MTJ supplied with a RF signal
- Generates DC voltage at tunable resonant frequency
- Inverse effect applicable as microwave generator

STT oscillators

- Nano STT oscillators
- Tunable with field/DC current

Routolo et al. NatNano **4**, 528, 2009 Dussaux et al. NatComm 1:8, 2010 Daec et al. NatPhys **4**, 803, 2008

Torkances and torques

• V_{mix} is derived from the LLGS equation

$$V_{mix} = \frac{1}{4} \frac{\partial^2 V}{\partial I^2} I_{RF}^2 +$$

AGH

$$+\frac{1}{2}\frac{\partial^2 V}{\partial l\partial \theta}\frac{\hbar\gamma\sin\theta}{4eM_{s}Vol\sigma}I_{RF}^{2}[\xi_{\parallel}S(\omega)-\xi_{\perp}\Omega_{\perp}A(\omega)]$$

• S and A are symmetric and asymmetric lorentzians:

$$\xi_{\parallel} = \frac{2e}{\hbar} \sin \theta \frac{dV}{dI} \frac{dT_{\parallel}}{dV} \quad \xi_{\perp} = \frac{2}{\hbar}$$

Wang et al. PRB 79, 224416, 2009

Tomasz Stobiecki, AGH WFilS, Kraków 1.04.2011

9

7

Frequency (GHz)

6

Parallel torkance vs. MgO thickness

 $\frac{d\tau_{\parallel}}{dV} = \frac{\hbar}{2e} \frac{2p}{1+p^2} \left(\frac{dI}{dV}\right)_{\parallel}$

Absolute torque values increases with decreasing barrier thickness

Sankey et al. Nat. Phys. 4, 67, 2008

Podsumowanie

- Z sukcesm wytworzono nano-złącza tunelowe z ultracienką barierą tunelową wykazujące efekt STT.
- Zademonstrowano:

AGH

- przełączanie magnetyzacji prądem spinowo spolaryzowanych elektronów (CIMS) w komórce pamięci STT-RAM
- oscylator na częstościach GHz.

Krajowe Centrum Nanostruktur Magnetycznych do Zastosowań w Elektronice Spinowej - SPINLAB

Stanowiska do osadzania warstw metodami epitaksji z wiązki molekularnej, ablacji laserowej, oraz osadzania z wykorzystaniem działa jonowego

AGH

Femtosekundowy laser i kriostat z nadprzewodzącymi magnesami do badań magnetooptycznych (A. Maziewski)

Zestaw pomiarowy do charakteryzacji właściwości nanostruktur i nano-urządzeń elektroniki spinowej w warunkach statycznych i dynamicznych (T. Stobiecki)

Stanowisko do badania dynamiki namagnesowania nanostruktur magnetycznych przy pomocy szerokopasmowego rezonansu ferromagnetycznego i impulsowej magnetometrii mikrofalowej (F. Stobiecki)

Mikroskop PEEM-LEEM (Photoemission Electron Microscope – Low Energy Electron Microscope) zapewniający obserwacje z wysoką zdolnością rozdzielczą, a w połączeniu z użyciem promieniowania synchrotronowego pozwalający na uzyskanie magnetycznej i czasowej rozdzielczości, a także selektywności chemicznej (J. Korecki)

Acknowledgements

AGH

AGH Department of Electronics

- M. Czapkiewicz (simulations)
- J. Kanak (structure)
- W. Skowronski (e-lithography Uni Bielefeld, TMR, CIMS, Spin-diode,)
- J. Wrona (deposition in Singulus, CIPT-capres measurements)
- A. Zaleski

Singulus AG

- J. Langer
- B. Ocker
- W. Maass

University of Bielefeld

- K. Rott (e-lithography training for WS)
- A. Thomas
- G. Reiss,

PTB Braunschweig

- S. Serrano-Guisan (PIMM experiment)
- H. W. Schumacher

AMU Poznań

- J. Barnaś(theory)
- P. Balaz
- AGH zespół prof. J. Koreckiego

Aalto University, Espoo, Finland

S. van Dijken

UROPEAN REGIONAL

Dziękuje za uwagę

