

AGH Krakow, Poland

Mössbauer Spectroscopy of Fe-Cr Alloys

Stanislaw M. Dubiel

Stanislaw.Dubiel@fis.agh.edu.pl

1 1 1

Wisła

Stainless steels

• Must contain \geq 10.5% Cr and low content of carbon

Harry Brearly

H. Goldsmidt

Albert Portevin

M. Mauermann

 Discoverd in 1900 – 1915 as effort of investigations of many people; Leon Guillet (F), Giesen (GB), Harry Brearley(GB), Hans Goldsmidt (D), Albert Portevin (F), Borchers (D) and Max Mauermann (PL)

Two aspects

2007 For GMR

Industriotechnological

Scientific

Aspect industrio-technological •

Industrio-technological aspect •

Crystallographic

Magnetic

6

Mössbauer Spectroscopy is one of the most relevant techniques to study Fe-Cr Alloys

- Spin- and charge-density changes
- Identification of α,γ and σ phases
- Kinetics of phase formation e. g.
- $\alpha \rightarrow \sigma$
- Short-range ordering (SRO)
- Phase decomposition (α, α')
- Curie temperature
- Néel temperaure
- Spin-glass freezing temperature
- Re-entrance transition
- Corrosion
- Texture

MS and Hyperfine Interactions

Spin- and charge-density

(1,1)

Spin & charge

SRO in Fe-Cr

Miscibility gap boundary

Borders of miscibility gap

19

S. M. Dubiel & G. Inden, Z. Metallkde, 78 (1987) 544

• Annealed samples: (a)15, (b) 20.8, (d) 70.6 at%Cr

x (%)	x _α (<n>)</n>	x _α (<h>)</h>	Χ α'
15.0	12.9	12.0	-
20.8	14.3	14.0	-
70.6	15.7	16.5	88.0

Borders of miscibility gap 1000 Experimental data: ⊠ Williams, 1958 * Imai et al., 1966 900 \triangle Vilar and Cizeron, 1982 Mossbauer spectrum, Kuwano, 1985 800 ⊟ Electrical resistance, Kuwano, 1985 ○ No Phase Seperation, Miller et al., 1995 \bigcirc Phase seperation, Miller et al., 1995 $\bigcirc \bigcirc$ lemperature, 700 • Dubiel and Inden, 1987 CALPHAD modeling: 600 This work Andersson and Sundman, 1987 500 400 He⁺-irradiated 0 Non-irradiated 0 300 0.05 0.10 0.15 0.20 0.25 () S.M.Dubiel, J.Zukrowski, Mater. Fe Chem. Phys., 141 (2013) 18 Mole fraction Cr

Xiong et al., CALPHAD (2011)

M. Levesque et al., PRB, 84 (2011) 184205

Kinetics of decomposition

T (°C)	Sample	x _{Cr} (%)	n	k [s ⁻¹]
415	NR	11.2(3)	0.6(1)	0.3
415	IR	13.9(3)	1.0(3)	3.9
450	NR	13.3(3)	0.4(5)	2.2

Arrhenius law

$$k = k_o \exp\left(-\frac{E}{k_B T}\right)$$

$$E = \frac{T_1 T_2}{T_2 - T_1} k_B \ln(\frac{k_2}{k_1})$$

122 kJ/mol

27

Dubiel & Zukrowski, Mater. Chem. Phys. 141 (2013) 18

• Short-range ordering: Fe₈₅Cr₁₅@415°C

• Each spectrum was analyzed in terms of 17 subspectra (sextets) corresponding to particular atomic configurations (*m*,*n*)

• Analysis yielded probabilities of (*m*,*n*), *P*(*m*,*n*), based on which the average number of Cr atoms in 1NN, <*m*>, that in 2NN, <*n*>, and the one in 1NN-2NN, <*m*+*n*>, was determined.

• SRO parameters, α_1 , α_2 , α_{12} , were next calculated from the following equations:

Short-range ordering: Fe₈₅Cr₁₅ @ 415°C

Solid lines represent best fits in terms of JMAK-like equation, hence α_{12} is linearly correlated with .

S. M. Dubiel, J. Zukrowski, Acta Mater., 61(2013)6207

Sigma (o) phase - identification

XRD

• T = 295 K

MS

30

Sigma (o) phase - kinetics

$$A_{\sigma} = 100 \left[1 - \exp[-kt^{n}] \right]$$

$$k = k_o \exp(-\frac{E}{RT})$$

$$E = 196 \pm 2 \text{ kJ/mol}$$

σ phase – Curie Temperature

(a) 4.2 K; (b) 295 K

(a) x = 45.0 (b) x = 46.2 and (c) x = 48.0

Summary

Mössbauer Spectroscopy is a very useful techniques to quantitatively investigate various issues pertinent to Fe-Cr alloys, and in particular:

- Short-rane ordering
- Borders of misceptibility gap
- Kinetics of phase separation
- Sigma-phase identification and its kinetics
- Magnetic ordering temperatures

Stanislaw M. Dubiel, AGH University of Sci. & Technol., Krakow, Poland

35

Acknowledgements

Thank you for listening!

Mössbauer Effect

Radiation	E [keV]	Intensity	Range* [nm]	
γ	14.4	0.11	~20 000	
X-K	6.3	0.28	~20 000	
X-L	0.7	0.002		
CE-K	7.3	0.79	~10-400	
CE-L	13.6	0.08	~20-1 300	
* In metallic Fe Range for He (25 keV) ~225 nm				