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Light sources for research with photons at DESY

Source: DESY, Hamburg
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Petra I11 Facilities

a total investment of 225 million €

PETRA and HERA accelerators

Source: DESY, Hamburg
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Intensity of photon flux
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The advantages of XFEL

*ultra-high brilliance and photon flux intensity

*high collimation

*wide energy/wavelength tunability (up to hard X-rays)
* specific polarization

*spatial coherence (transverse and longitudinal)
*pulsed time structure

Source: DESY, Hamburg



Free-electron laser and conventional laser

LASER- Light Amplification by Stimulated Emission of Radiation

XFEL- X-Ray Free Electron Laser based on
SASE- Self-Amplified Spontaneous Emission



Pump —» £
l Laser transition

E1—

Mirror Permeable mirror

Active medium

~ I

Optical resonator

Principle of a conventional quantum laser where the
electrons are bound to atomic, molecular or solid-state
energy levels (”bound-electron laser”).

Source: DESY, Hamburg



Plasma X-ray laser

|I X-ray laser
Target

COMET laser

Figure 2. Rendering of Livermore's COMET (compact multipulse teravatt) tabletop <-ray
laser showing the laser system and target chamber. The inset shows laser beams hitting
the stepped target and producing a plasma, which in turn generates an =-ray laser beam.



The FEL is not, strictly speaking, a laser, i.e. a device based on quantum-
mechanical stimulated emission, and its operation is completely described within
the framework of classical physics. The FEL is a system consisting of a relativistic
electron beam and a radiation field interacting with each other while propagating

through an undulator.

Electron source
and accelerator

Magnetic structure

Electron trap

Light beam

Experiment

XFEL_Linac_Accelerator.mov

XFEL_SASEFEL.mov

Schematic representation
of undulator radiation.

Source: DESY, Hamburg



Mirror Undulator Output

Electron beam

Undulator
Seed radiation Output radiation
ALALL .1|L|f1,|.L|J~ i

|
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Electron beam

Undulator
i Output radiation

Electron beam

Free-electron laser configurations: oscillator (top), seeded amplifier
(middle), and SASE FEL (bottom).

Source: DESY, Hamburg



(a) Low gain FEL

Mirror Permeable mirror
Undulator

Circulating
electron bunches

(b) SASE FEL

Undulator

Ele;;;- -\

bunch \>

Principle of a free-electron laser: (a) For visible or infrared light

(b) In the ultraviolet and X-ray region one can apply the mechanism
of self-amplified spontaneous emission

Source: DESY, Hamburg
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The self-seeding mechanism:

Source: DESY, Hamburg



Wavelength of undulator radiation

v<c - electron velocity
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Source: DESY, Hamburg
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Electron trajectory

S Light wave

Condition for sustained energy transfer from electron to
light wave in an undulator: The light wave has to slip
forward by per half-period of the electron trajectory.

Source: DESY, Hamburg



Plane electromagnetic wave
E (z,t)= E,cos(k,z- w,t)
with k,=w,/c=21/1,
The time derivative of the electron energy

W=y mgec® s

d .
—— =y Fz-ev (1E (1t
- L(DE (2)

Source: DESY, Hamburg
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To achieve light amplification the electron energy must exceed the resonance energy
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The resonant Lorentz factor is

= u U1+ —
£ 20 1 2

¢ L

[
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Radiation

power on a
logarithmic
sca:fe The principle of the free-electron laser (XFELinfo).url

microbunching.mov

>

Distance

The exponential growth of the FEL pulse energy E as
a function of the length z traveled in the undulator.

Average energy in the radiation pulse
against magnetic undulator length for
SASE 3 operating at 0.4 nm
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Z [m] Source: DESY, Hamburg
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The power gain

P
P(z) - 9””‘ exp(2z/L,) forz2 2L,
L.- field gain lenght
P. - effective input power
A u
L,=100L, L=
4np

p-saturation efficiency
L .- saturation lenght

sat
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Source: DESY, Hamburg



Waveguide
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Mirror

Photo
cathode
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Cut through the electron source of FLASH.

Source: DESY, Hamburg



Requirements on the drive beam

of an X-ray FEL o o o

*High peak current p| —~ p| —~ p| I\

*Very low emittance |

*Small energy spread e o \— n o—
¢

e

Magnetic chicane :

Low energy-__

High energy

Principle of longitudinal electron bunch compression.

Source: DESY, Hamburg
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process

Electron bunch time pattern with 10 Hz repetition rate and up to 3,000 bunches
in a 0.6 ms long bunch train. The separation of electron bunches within a train is
200 ns for full loading. The duration of electron bunches is ~200 fs and the non-
linear FEL process reduces the duration of the photon pulses to ~100 fs.

Source: DESY, Hamburg



SASE 2

tunable, planar

2.1 =04 nm

electrons
17.5 GaV / U1

—el N

SASE1 : ﬂ
tunanle, planar SASE 3 -

0.1 nm tunable, nhalical
0.4 =1.6nm

Experiments

Schematic layout of the planned X-ray laser laboratory in a top view. Black and red lines
indicate electron and photon beam lines, respectively. The undulators are marked in blue

and violet.

Photon energy [keV] Polarisation Tunability Gap varia-
tion
SASEA 12.4 Linear Mo s
SASEZ2 3i1-124 Linear es Yes
SASE 3 08-31(0.25-1.00" CircularLinear Yies Yas
L, U2 20-100 Linear Yies Yas

Source: DESY, Hamburg



Scientific applications of XFEL
radiation
*Femtosecond chemistry
* Investigation of single molecules
e X-ray microscopy
e Plasma physics

* Coherent scattering experiments



Femtochemistry

Molekiilstrahl
Molecular beam

| J.
1. Laserblitz 16st Reaktion aus ‘ ! 2. Laserblitz macht Momentaufnahme

1. Laser flash triggers reaction 4 2. Laser flash takes instantaneous “snapshot”

"Filming" chemical reactions using ultra-fast lasers.
The brilliance of one single laser flash is so high that it can generate images
of reacting molecules with atomic resolution ¢, ... prsy, Hamburg



X-ray microscopy




Structural

biology
The X-ray laser opens up completely new
opportunities to decipher biological molecules
with atomic resolution without the need for the
extra step of growing crystals. The X-ray laser
flashes are so intense that they can be used to
create a high-resolution image of a single
molecular complex. The flash duration is
shorter than 100 femtoseconds and is thus
short enough to produce an image before the
sample is destroyed by the intense X-rays.

Ribosomes are large molecular complexes that
act as ""protein factories'" and occur in every
Ribosomes cell. The X-ray laser opens up completely new
opportunities to decipher such biological
structures with atomic resolution without the
need for the extra step of tediously growing
them into crystals first.

Source: DESY, Hamburg
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Schematic diagram of the single-particle diffraction imaging experiment.



Diffraction of proteins

Planar section through the centre of the molecular transform of a small protein
molecule (lysozyme, left) and of a larger virus capsid (tomato bushy stunt virus,
right)

Source: DESY, Hamburg



Biomolecules are destroyed by intense X-ray
radiation: they "explode". The illustration shows a
simulation of this process. In order to obtain a
usable image of the biomolecule, the image must be
recorded very quickly before the sample is

destroyed.

Source: DESY, Hamburg



Femtochemistry

Short-lived transition

1. Laser flash
triggers reaction

2. Laser flash takes
instantaneous snapshot

A chemical reaction is triggered by a laser flash: The molecules are excited to
a more energetic state, after which they "drop' back to their less energetic
equilibrium state. A second laser pulse is then sent at varying intervals (t)
after the first one to take instantaneous snapshots of the changes that have

¢ Source: DESY, Hamburg



Plasma physics

Sample with buried
micro=dot

Tuned XFEL pumps
selected transition
in kev range

Probe baam for
Thomson scatfer
gets [_and N_, Laser creates

plasma plume with

micro=dot target

Experimental arrangement for spectroscopy experiments. The burial of a
microdot in a matrix helps to better define the plasma conditions at the
time and plac of excitation by the XFEL pump. Time- and space-resolved

spectroscopy will be used todiagnose the emission. Source: DESY, Hamburg



Emission
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Figure 6.4.12 Simulation of change to emission spectrum for an Aluminium plasma
pumped withan XFEL tuned to 1,869 eV in order to pump the Helium-like 1s-1s3p tran-

sifion.

Source: DESY, Hamburg



PETRA III

Source: DESY, Hamburg



PETRA III

MNumlber Hame Energy range | Comment Contact
P01 |Cvynamice beamline Dynamik Sirahlfihrung 5 - 40 keV H. Franz, DESY
P02 |Hard X-ray scattering Hart= Rontgenstrahlen/Beugung 20-100 kev siraight |OESY
P03 |Micro SAXS/WAKXS Mikro SAXSANAXS 8 -25 keV down 5. Roth, DESY
P04 |Variable Polarization XL X1 Strahlflhrung 0.2-30ke J. Viefhaus, DESY
P05 |Micro- and nano-tomography |Mikro/Nano-Tomographie B - 25 ke gide A. Haibel, DESY/GKSS
PoOG  |Hard X-ray micro probe, imaging |Nmmm=mbbiuung 2.4 - 50 ke straight |G- Falkenberg, DESY
P07 |High energy materials science IMateriaIf{:-rschung 40 - 300 ke M. Schell, GKSS/DESY
P& |High resolution diffraction Hochaufidzende Diffrakiion 5.4 -30 ke fop 0. Seeck, DESY
P09 |Resonant scattering/diffraction Fesonante Strevung/Diffrakiion 2.4 -50 ke siraight  |J. Strempfer, DESY
P10  |Coherence applications |Foharenzanwsndung 4 .25 keV 0. Leupold, DESY
P11 |Bio imaging/diffraction Proteinkriztallographie/Abbildung 8- 25 keV side |MEI, HGF, DESY
P12 |BioSAXS Bio SAXS £-20 ke straight _|M. Rofile, EMBL
P13 |Macro molecular cryetallography | |Bickristallographis | 5 - 35 keV side M. Cianci, EMBL
P14 |Macro molecular crystallography Einkristall-::-gra:uhie Il 5 - 35 keV zira ght 5. Bourenkov, EMBL
high beta section 142x5 um
low beta section A5G pm

Positron energy 6 GeV
14 beamlines with 30 experimental stations

X-ray spectral range from 0.2 to 300 keV, t=]ps

rce: DESY, Hamburg



