Badania nad schorzeniami neurodegeneracyjnymi przy wykorzystaniu wybranych metod spektroskopowych

Dr inż. Magdalena Szczerbowska-Boruchowska Zakład Metod Jądrowych, WFiIS

Plan wystąpienia

- 1. Wprowadzenie (cel badań, jednostki współpracujące)
- 2. Krótka prezentacja badanych schorzeń
- 3. Materiał badawczy
- 4. Techniki spektroskopowe stosowane w badaniach
- 5. Mikrospektroskopia w podczerwieni z transformacją Fouriera
 - 5.1. Podstawy teoretyczne techniki
 - 5.2. Aparatura i warunki pomiarowe
 - 5.3. Wyniki badań dla grupy kontrolnej, PD i ASL
 - 5.4. Podsumowanie badań wykonanych z zastosowaniem mikrospektroskopii FT-IR

Plan wystąpienia, c.d.

6. Analiza pierwiastkowa tkanki OUN (SR-XRF, XANES)

- 6.1. SR-XRF. Aparatura i warunki pomiarowe, porównanie parametrów i granic wykrywalności w ESRF (ID 22) i HASYLAB (L)
- 6.2. SR-XRF. Wyniki analizy topograficznej w zależności od rozmiarów wiązki
- 6.3. SR-XRF. Wyniki analizy ilościowej dla grupy kontrolnej i badanych neurodegeneracji
- 6.4. XANES. Podstawy techniki.
- 6.5. XANES. Wyniki analizy stopni utleniania Fe w tkance OUN
- 6.6. XANES. Wyniki analizy stopni utleniania Cu w tkance OUN

Plan wystąpienia, c.d.

Podsumowanie badań pierwiastkowych tkanki OUN Plany na przyszłość

Cel badań

Analiza składu pierwiastkowego, stopni utlenienia pierwiastków oraz związków organicznych w strukturach tkanki ośrodkowego układu nerwowego (OUN) człowieka dla potrzeb neurologii, neurobiologii. Badania w kierunku wybranych schorzeń ośrodkowego układu nerwowego (choroba Parkinsona, stwardnienie zanikowe boczne, nowotwory mózgu)

Jednostki współpracujące

- 1. Zakład Metod Jądrowych, WFilS, AGH
- 2. Zakład Neuropatologii, Instytut Neurologii, CM UJ
- 3. Klinika Neurologii, Instytut Neurologii, CM UJ
- 4. Katedra Biochemii Lekarskiej, CM UJ
- 5. Katedra Fizjologii CM UJ
- 6. European Synchrotron Radiation Facility, Grenoble, Francja (linie ID 22, ID 21)
- 7. HASYLAB, Hamburg, Niemcy (linie L)
- 8. Synchrotron SOLEIL, Gif-sur-Yvette, Francja (linia SMIS) ⇐ (LURE)

Badane schorzenia neurodegeneracyjne

Choroba Parkinsona: choroba ośrodkowego układu nerwowego manifestująca się zaburzeniami ruchowymi. Bezpośrednią przyczyną choroby jest stopniowe zmniejszanie się ilości dopaminy (neuroprzekaźnik) w mózgu wskutek obumierania komórek wytwarzających dopaminę (głównie neurony istoty czarnej). Nie są znane natomiast przyczyny zaniku neuronów.

Stwardnienie zanikowe boczne: postępujące schorzenie neurodegeneracyjne, którego jedną z cech jest degeneracja i zanik neuronów ruchowych szczególnie w rdzeniu kręgowym, jądrach ruchowych pnia mózgu oraz w "korze ruchowej". Choroba całkowicie nieuleczalna, prowadząca do uszkodzeń neuronów sterujących motoryką, a w rezultacie - do zaniku mięśni. Etiologia podobnie jak w przypadku choroby Parkinsona nie jest poznana.

Materiał badawczy

Rdzeń kręgowy

Preparatyka próbek

nie utrwalana tkanka z okolic OUN

zamrażanie (-30 °C) i cięcie na kriomikrotomie

skrawki 20 µm

techniki spektroskopowe

histopatologia

nakładanie na folię AP1, ultralene

suszenie w temperaturze -20 °C

Stosowane techniki badawcze

Synchrotronowa Rentgenowska Mikroanaliza Fluorescencyjna, SR-XRF - analiza składu pierwiastkowego

Spektroskopia absorpcji promieni X w pobliżu progu absorpcji, XANES - badanie stopni utlenienia Fe i Cu

Mikrospektroskopia w podczerwieni z transformacją Fouriera - analiza biomolekuł

MIKROSPEKTROSKOPIA W PODCZERIWENI Z TRANSFORMACJĄ FOURIERA (FT-IR)

Widmo promieniowania elektromagnetycznego

Bliska IR: 4000 - 14000 cm⁻¹; Średnia IR: 500 - 4000 cm⁻¹; Daleka IR: 5 - 500 cm⁻¹

Typy drgań molekuł

Liniowy układ "n" atomów: 3n-5 typów drgań Nieliniowy układ "n" atomów: 3n-6 typów drgań

Drgania rozciągające

symetryczne asymetryczne

Drgania deformacyjne (zginające)

nożycowe

wachlarzowe

Kopia z: http://www.shu.ac.uk/schools/sci/chem/tutorials/molspec/irspec1.htm

Podstawy spektroskopii w podczerwieni

Makroskopowy model drgającej cząsteczki

$$\upsilon_{osc} = \frac{1}{2\pi} \sqrt{k \frac{m_1 + m_2}{m_1 m_2}}$$

k - stała siłowa; m_1 , m_2 - masa atomów

Absorbowane jest tylko promieniowanie o częstotliwości odpowiadającej częstotliwości drgań danego wiązania w cząsteczce i takie, którego częstotliwość spowoduje zmianę elektrycznego momentu dipolowego cząsteczki

>Absorpcja promieniowania IR przez drgające molekuły => zmiana energii oscylacyjnej

Przykładowe widmo FTIR (octan etylu)

Zasada działania spektrometru IR

Zasada działania spektrometru FT-IR

Układ optyczny

Komputer

Układ optyczny - pomiar intensywności specjalnie zakodowanej wiązki IR po przejściu przez próbkę (typowy spektrometr IR)

Interferogram - sygnał całkowitej intensywności promieniowania IR docierającego do detektora przy danej pozycji zwierciadła ruchomego

> Komputer - transformacja Fouriera interferogramu, dostarczenie informacji

FT-IR; Aparatura pomiarowa

FT-IR; Aparatura pomiarowa (Mirage, SA5, LURE)

- Spektrometr FTIR Nicolet, Magna-IR560;
- Źródło zewnętrzne: synchrotron
- Ýźródło lokalne: pręt węgliku krzemu (SiC) globar
- > Mikroskop IR Nic-Plan (Nicolet, Thermo-Optic);
- Formiar wiązki 6 x 6 μm (synchrotron), 18 x 18 μm (globar)
- Detektor podczerwieni MCT (mercury cadmium telluride -HgCdTeO₂)

Zalety stosowania synchrotronowego źródła IR

Dr Paul Dumas (LURE), materiały własne

Własności chemiczne molekuł biologicznych

Typ makromolekuł	Częstotliwość drgań [cm ⁻¹]	Typ drgania normalnego
	3350	N-H rozciągające
	3060	N-H zginające
białka	1655	C=O rozciągające(amid I)strukt.a
	1627	C=O rozciągające(amid I)strukt.β
	1544	N-H zginające (amid II) strukt.α
lipidy, białka	1740	C-O rozciągające (utl. C=O)
lipidy, cukry	1173	CO-O-C rozciągające sym
	2956	C-H (-CH ₃) rozciągające sym
lipidy	2924	C-H (-CH ₂) rozciągające asym
	1457	CH ₃ zginające asym
lizofosfolipidy sfingomieliny	1405	(CH ₃) ₃ N+ zginające sym
kwasy	1238	P-O zginające asym
nukleinowe,	1085	P-O zginające sym
fosfolipidy	1047	C-O-P rozciągające
białka, cukry	3300	O-H rozciągające

Oznaczenia struktury drugorzędowej białek

 α - helix

absorbancja

<u>ttp://cop.utmem.edu/lyophilization/figure1b-3.gif</u>

Liczba falowa [cm⁻¹]

Widma absorpcyjne IR -istota czarna, kontrola

Widma absorpcyjne IR - istota czarna, kontrola⇔PD

Istota czarna - Kontrola

min

<u> Istota czarna - ch. Parkinsona</u>

Widma absorpcyjne IR - rdzeń kręgowy, kontrola ⇔ ALS

Rdzeń kręgowy - Kontrola

Rdzeń kręgowy - Kontrola (3D)

Rdzeń kręgowy - ALS, amid I (3D)

FT-IR; Udział białek do tłuszczów

Wartości stosunku intensywności pasm absorpcyjnych białek (amid I) do tłuszczów (2800-3000 cm⁻¹) w neuronach istoty czarnej i rdzenia kręgowego.

FT-IR; Udział amidu I do amidu II

Wartości stosunku intensywności pasm absorpcyjnych amidu I do amidu II w neuronach istoty czarnej i rdzenia kręgowego.

FT-IR; podsumowanie wyników badań

Grupa kontrolna

- Silniejsze gromadzenie grup białkowych i kwasów nukleinowych w obrębie neuronów istoty czarnej grupy kontrolnej;
- Tendencja grup tłuszczowych do gromadzenia w obrębie neuronu, jednak o rozkładzie zdecydowanie odmiennym niż grupy białkowe;
- Lokalizacja wiązania C=O fosfolipidów na zewnątrz ciała neuronu (mielina produkowana przez oligodendrocyty, podwójna błona komórkowa komórek glejowych) tylko neurony istoty czarnej;

Ch. Parkinsona

 Wzrost intensywności pasma przy 1173 cm⁻¹ (wiązanie rozciągające asymetryczne -CO-O-C) - podobnie jak w danych literaturowych dotyczących komórek apoptotycznych;

Ch. Parkinsona, c.d.

- Poszerzenie pasma amidu I i przesuniecie w kierunku wyższych częstotliwości, jak również zmniejszenie intensywności pasma amidu I do amidu II - typowe dla degeneracji amidu drugorzędowego do pierwszorzędowego;
- 2. Znaczące zmniejszenie intensywności pasm pochodzących od kwasów nukleinowych (1280 i 1086 cm⁻¹) - udział czynnika genetycznego???
- 3. Zmiany w obrębie grup lipidowych (2930, 2850, 1380 cm⁻¹) sugerujące zmiany w błonach biologicznych;
- Brak korelacji pomiędzy pozycją neuronu a wzrostem intensywności pasm absorpcyjnych bimolekuł, obserwowany dla grupy kontrolnej;
- Obecność neuronów w obrazie morfologicznym i brak odzwierciedlenia tego w obrazie IR sugeruje zaburzenia prawidłowego funkcjonowania neuronów występujące przed atrofią komórek.
- 6. Zmiany w obrębie różnych typów biomolekuł mogą potwierdzać multietiologiczny charakter ch. Parkinsona;

FT-IR; podsumowanie wyników badań

Stwardnienie boczne zanikowe

- Zwiększenie stosunku intensywności pasma amidu I do amidu II (obniżenie intensywności pasma amidu II) - zmiany typowe przy przejściu od amidu drugorzędowego do pierwszorzędowego;
- Zmniejszenie intensywności pasm pochodzących od białek w stosunku do lipidów (1655 cm⁻¹ / 2930 cm⁻¹);
- We wszystkich przypadkach ALS wzrost intensywności pasma przy 1380 cm⁻¹ (CH₃ zgin. sym.), pochodzącego od kwasów tłuszczowych; sugeruje zmiany stanu błon komórkowych;

SYNCHROTRONOWA RENTGENOWSKA MIKROANALIZA FLUORESCENCYJNA (SR-XRF)

SR-XRF, XANES; Ośrodki badawcze

ESRF, Grenoble: Linie pomiarowe: ID 21, ID 22

HASYLAB, Hamburg: Linia pomiarowa: L

SR-XRF; Zalety metody

Monochromatyczna wiązka promieniowania synchrotronowego (17 keV); Wykrywalność pierwiastków na poziomie mg/kg; Rozmiar wiązki : 0.5÷ 15 μm (ogniskowanie: ESRF - soczewki Fresnela, lustra Kirkpatrick-Baez'a; HASYLAB - polikapilara); Krótki czas pomiaru ~ 3 ÷ 10 s/punkt; Jednoczesna analiza wielu pierwiastków, od P; Możliwość powierzchniowego obrazowania zawartości pierwiastków w próbce; Brak uszkodzeń termicznych próbki; 🐨 Brak efektu elektrycznego ładowania próbki.

SR-XRF; Aparatura badawcza

Schemat układu pomiarowego stosowanego w pomiarach SR-XRF oraz XANES na linii L w HASYLAB

SR-XRF; Aparatura badawcza

P-próbka M-mikroskop D-detektor X-kierunek wiązki

Zdjęcie układu pomiarowego, stosowanego w pomiarach SR-XRF oraz XANES na linii L w HASYLAB

SR-XRF; Istota czarna - widmo promieniowania

Widmo promieniowania X, wzbudzone w tkance istoty czarnej wiązką promieniowania synchrotronowego (czas pomiaru 3 s)

SR-XRF; Granice wykrywalności pierwiastków

Porównanie granic wykrywalności pierwiastków w tkance OUN w zależności od rozmiarów wiązki wzbudzającej

SR-XRF; Rozdzielczość przestrzenna

Porównanie map rozkładu Cu w tkance istoty czarnej w zależności od rozmiarów wiązki wzbudzającej

SR-XRF; Istota czarna - kontrola

Mapy rozkładu wybranych pierwiastków w neuronie istoty czarnej dla przypadku kontrolnego (ESRF, 17 keV, 2.8 μm x 1.6 μm, 3s/pkt)

SR-XRF; Istota czarna - ch. Parkinsona

Mapy rozkładu wybranych pierwiastków w neuronie istoty czarnej dla przypadku ch. Parkinsona (ESRF, 17 keV, 2.8 μm x 1.6 μm, 3s/pkt)

SR-XRF; Analiza ilościowa - neurony istoty czarnej

MASY POWIERZCHNIOWE PIERWIASTKÓW [µg/cm²]

	Grupa kontrolna*		PD	
	Min (SD)	Max (SD)	Średnia (SD)	
Р	7.5 (0.9)	15.4 (0.6)	23 (1)	
S	4.3 (0.7)	8.3 (0.8)	13.5 (0.7)	
CI	2.1 (0.2)	4.7 (0.2)	5.6 (0.5)	
κ	7.3 (0.6)	20.4 (0.5)	13.5 (1.4)	
Ca	0.15 (0.02)	0.29 (0.01)	6 (1)	
Fe	0.21 (0.03)	0.68 (0.07)	1.7 (0.2)	
Cu	0.014 (0.002)	0.086 (0.005)	0.114 (0.007)	
Zn	0.07 (0.01)	0.13 (0.01)	0.58 (0.08)	
Se	0.0034 (0.0002)	0.0063 (0.0004)	0.008 (0.001)	
Br	0.0032 (0.0003)	0.0143 (0.0005)	0.012 (0.001)	

*Minimalne i maksymalne wartości (średnie z 9 neuronów) z 8 przypadków kontrolnych

SR-XRF; Analiza ilościowa - kora mózgowa

MASY POWIERZCHNIOWE PIERWIASTKÓW [µg/cm²]

	Grupa kontrolna*		PD	
	Min	Мах	Średnia (SD)	
Р	7.6	10.4	12.10 (0.05)	
S	2.2	2.9	2.74 (0.01)	
СІ	1.9	3.1	5.7 (0.1)	
κ	4.3	5.7	7.1 (0.1)	
Ca	<dl**< td=""><td>0.08</td><td>0.196 (0.001)</td></dl**<>	0.08	0.196 (0.001)	
Fe	0.10	0.12	0.089 (0.001)	
Cu	<dl< td=""><td>0.013</td><td>0.014 (0.001)</td></dl<>	0.013	0.014 (0.001)	
Zn	0.02	0.04	0.068 (0.001)	
Se	<dl< td=""><td><dl< td=""><td><dl< td=""></dl<></td></dl<></td></dl<>	<dl< td=""><td><dl< td=""></dl<></td></dl<>	<dl< td=""></dl<>	
Br	0.002	0.009	0.011 (0.001)	

*Minimalne i maksymalne wartości (średnie) dla 5 przypadków kontrolnych **Poniżej granicy detekcji

SR-XRF; Analiza ilościowa - istota biała

MASY POWIERZCHNIOWE PIERWIASTKÓW [µg/cm ²]				
	Grupa kontrolna*		PD	
	Min	Max	Średnia(SD)	
Ρ	12.9	16.0	16.1 (0.1)	
S	2.5	3.3	3.81 (0.04)	
CI	1.7	2.6	2.86 (0.03)	
Κ	3.8	14.25	7.0 (0.2)	
Ca	<dl**< td=""><td>0.13</td><td>3.7 (0.4)</td><td></td></dl**<>	0.13	3.7 (0.4)	
Fe	0.06	0.08	0.430 (0.005)	
Cu	<dl< td=""><td>0.018</td><td>0.032 (0.001)</td><td></td></dl<>	0.018	0.032 (0.001)	
Zn	<dl< td=""><td>0.02</td><td>0.149 (0.002)</td><td></td></dl<>	0.02	0.149 (0.002)	
Se	<dl< td=""><td><dl< td=""><td><dl< td=""><td></td></dl<></td></dl<></td></dl<>	<dl< td=""><td><dl< td=""><td></td></dl<></td></dl<>	<dl< td=""><td></td></dl<>	
Br	<dl< td=""><td>0.008</td><td>0.004 (0.001)</td><td></td></dl<>	0.008	0.004 (0.001)	

* Minimalne i maksymalne wartości z 8 przypadków kontrolnych
**Poniżej granicy wykrywalności

SR-XRF; Rdzeń kręgowy - kontrola

Mapy rozkładu wybranych pierwiastków w neuronie istoty czarnej dla przypadku ch. Parkinsona (ESRF, 17 keV, 5 μm x 2 μm, 3s/pkt)

SR-XRF; Rdzeń kręgowy - ALS

Mapy rozkładu wybranych pierwiastków w neuronie istoty czarnej dla przypadku ch. Parkinsona (ESRF, 17 keV, 5 μm x 2 μm, 3s/pkt)

SR-XRF; Analiza ilościowa - rdzeń kręgowy

MASY POWIERZCHNIOWE PIERWIASTKÓW [µg/cm²]

	Grupa kontrolna [◆] Min (SD) – Max (SD)	ALS (1) *	ALS (2)	ALS (3)
Ρ	13.0 (0.9) – 15 (1)	7.8 (0.5) – 21 (1)	20 (1)	8.9 (0.6)
S	4.9 (0.3) - 6.1 (0.4)	3.1 (0.2) - 5.9 (0.4)	4.0 (0.3)	3.7 (0.2)
	6.4 (0.4) - 9.6 (0.6)	3.9 (0.2) - 9.3 (0.6)	5.6 (0.3)	7.0 (0.4)
Κ	3.7 (0.2) - 6.0 (0.4)	3.4 (0.2) - 6.2 (0.4)	11.2 (0.7)	3.9 (0.2)
Ca	0.24 (0.01) - 0.36 (0.02)	0.18 (0.01) - 0.39 (0.02)	17 (1)	0.44 (0.03)
Fæ	0.029 (2*10 ⁻³) - 0.101 (6*10 ⁻³)	0.033 (2*10 ⁻³) - 0.055 (3*10 ⁻³)	1.6 (0.1)	0.092 (6*10 ⁻³)
Qu	0.0072 (5*10 ⁻⁴) - 0.0084 (6*10 ⁻⁴)	0.0053 (4*10 ⁻⁴) - 0.0071 (5*10 ⁻⁴)	0.0070 (5*10 ⁻⁴)	< DL*
Z'n	0.063 (4*10 ⁻³) - 0.081 (5*10 ⁻³)	<mark>0.0050 (3*10⁻⁴)</mark> - 0.071 (4*10 ⁻³)	0.18 (0.01)	0.068 (4*10 ⁻³)
Br	0.0051 (3*10 ⁻⁴) - 0.020 (1*10 ⁻³)	0.0054 (3*10 ⁻⁴) - 0.019 (1*10 ⁻³)	0.0080 (5*10 ⁻⁴)	0.020 (1*10 ⁻³)

* dane z 5 przypadków; * dane z 5 neuronów; * poniżej granicy wykrywalności;

SR-XRF; Podsumowanie badań

- 1. Stwierdzono obecność P, S, Cl, K, Ca, Fe, Cu, Zn, Se, Br, Rb i Sr w tkance OUN.
- 2. Rozkłady mas powierzchniowych pierwiastków wykazują zróżnicowanie w obrębie komórek nerwowych.
- 3. Wyższe masy powierzchniowe Ca, Fe i Zn zaobserwowano w ciałach komórek nerwowych Ca, Fe, Cu i Zn w istocie białej, natomiast Ca, Cl i Zn w korze mózgowej dla przypadku ch. Parkinsona w porównaniu z grupą kontrolną.
- 4. Dla próbki istoty czarnej reprezentującej przypadek PD stwierdzono silną akumulację Fe i Ca w strukturach nieidentyfikowanych histopatologicznie.
- 5. W badaniach ALS nie stwierdzono jednoznacznych anomalii w gromadzeniu danego pierwiastka. Stwierdzono jedynie indywidualne różnice pomiędzy przypadkami ALS a kontrolą.

SPEKTROSKOPIA ABSORPCJI PROMIENIOWANIA X W POBLIŻU KRAWĘDZI ABSORPCJI (XANES)

XANES; Podstawy techniki

Informacje uzyskiwane z widma XANES (30 eV przed: 50 eV)

- stopień utlenienia absorbującego atomu (krawędź i pre-pik)
- symetria związku ośmiościenna, czworościenna (pre-pik)

- 1. Im wyższy stopień utlenienia pierwiastka, tym większe przesunięcie krawędzi absorpcji w kierunku wyższych energii (zależność liniowa).
- 3. Przesunięcie krawędzi rzędu kilku eV na jeden stopień utlenienia.
- 5. Przesunięcie piku przedkrawędziowego dziesiąte eV na jeden stopień utlenienia.

XANES; Fe - istota czarna

Widma XANES Fe zmierzone w neuronach istoty czarnej

XANES; Fe - istota czarna

Widma XANES Fe zmierzone w neuronach istoty czarnej

XANES; Fe - istota czarna

Widma XANES Fe zmierzone w neuronach istoty czarnej dla wybranej próbki kontrolnej i próbki reprezentującej PD

XANES; Cu - istota czarna

Widma XANES Cu zmierzone w neuronach istoty czarnej

XANES; Podsumowanie wyników

- Nie stwierdzono różnic w stopniu utlenienia Fe pomiędzy neuronami istoty czarnej dla przypadku PD i grupy kontrolnej.
- W przeważającej części żelazo w pigmentowanych neuronach występuje na trzecim stopniu utlenienia.
- Wyniki badań techniką XANES dla Cu w próbkach istoty czarnej nie wykazały istotnych różnic w stopniu utlenienia tego pierwiastka dla przypadku ch. Parkinsona w porównaniu z grupą kontrolną.
- Większość miedzi występuje w neuronach istoty czarnej na drugim stopniu utlenienia czyli w formie utlenionej.

Plany na przyszłość

- Analiza stopni utlenienia siarki w nowotworowych glejakach mózgu w zależności od stopnia złośliwości nowotworu;
- 2. Analiza molekuł biologicznych dla przypadków nowotworowych glejaków mózgu przy wykorzystaniu mikrospektroskopii w podczerwieni;
- 3. Ocena udziału pierwiastków śladowych i biomolekuł w procesie epileptogenezy towarzyszącej glejakom mózgu;
- Ocena udziału pierwiastków śladowych i biomolekuł w procesach neurodegeneracyjnych, związanych ze stwardnieniem bocznym zanikowym, w oparciu o badania na hodowlach komórkowych;
- Kontynuacja badań nad schorzeniami neurodegeneracyjnymi (analizy pierwiastkowe i molekularne);

Plany na przyszłość, c.d.

6. Ocena wpływu zanieczyszczeń środowiska na akumulację pierwiastków w tkankach (w oparciu o badania na zwierzętach).

Dotychczasowe badania wykonane na grupie żab (gatunek: żaba śmieszka) hodowanych w wodach skażonych ołowiem. Ocena akumulacji Pb oraz innych pierwiastków w wybranych narządach zwierząt (mózg, nerki, wątroba, gonady). Najsilniejsza akumulacja Pb wystąpiła w nerkach i wątrobie (ok. 10x wyższa niż w kontroli), gonady (ok. 5x). Mózg: akumulacja Pb porównywalna z kontrolą. W wątrobie i nerkach zaobserwowano zmiany w akumulacji Cl, Fe, Cu, Zn, Br, Rb.

DZIĘKUJĘ ZA UWAGĘ