Badanie mechanizmów rekrystalizacji w metalach

Jacek Tarasiuk

KFMS, 2007

dr Philippe Gerber, dr Krystian Piękoś

prof. Krzysztof Wierzbanowski

dr Brigitte Bacroix LPMTM, Univ. Paris XIII Jacek Tarasiuk

Badanie mechanizmów rekrystalizacji w metalach Modele rekrystalizacji i narzędzia analizy tekstury i mikrostruktury

Wydział Fizyki i Informatyki Stosowanej Akademia Górniczo-Hutnicza Kraków 2007

Plan referatu

- (1) Krótkie wprowadzenie teoretyczne.
- (2) EBSD Opis techniki pomiarowej.
- (3) Przegląd zagadnień omawianych w pracy.
- (4) Szacowanie frakcji zrekrystalizowanej.
- (5) Doświadczalne badanie rekrystalizacji w miedzi.
- (6) Modelowanie rekrystalizacji.
- (7) Podsumowanie.

Krótkie wprowadzenie teoretyczne

$$\frac{\mathrm{dV}}{\mathrm{V}} = \mathrm{f}(\mathrm{g})\mathrm{dg}$$

10

6

Krótkie wprowadzenie teoretyczne

Próbka pochylona pod niewielkim kątem. Elektrony ulegają rozproszeniu nieelastycznemu.

Wstecznie rozproszone elektrony ulegają dyfrakcji, tworząc stożki Kosella.

Przecięcia stożków Kosella ze sferą Ewalda tworzą pary linii Kikuchiego.

Linie Kikuchiego odzwierciedlają relacje geometryczne pomiędzy płaszczyznami krystalograficznymi.

Zaawansowane algorytmy analizy obrazu znajdują w obrazie z kamery CCD układ linii Kikuchiego.

Odrębne procedury analizując geometrię układu linii Kikuchiego znajdują orientację sieci krystalicznej w punkcie, w którym wiązka elektronów trafia w próbkę.

(struktura, zestawy płaszczyzn, itp...)

Czasami trudno jednoznacznie zidentyfikować wzorzec linii Kikuchiego.

35.00 µm = 35 steps IPF [010]

35.00 µm = 35 steps Continuous IQ 20.5...91.4

Orientacja sieci krystalicznej

Jakość obrazu (Image Quality)

Współczynnik zaufania (Confidence Index)

Orientacja sieci krystalicznej - dokładność ok. 0.1°
 Rozdzielczość przestrzenna – ok. 0.5 μm

maalad maadmich omawianwah w progy

EBSD Viewer v.2.9 (c) J.T. (3.07.2006)

File Windows EBSD Map Projection Analyze Tools

_ 8 ×

KFMS, WFilS, AGH

Algorytmy genetyczne w IM

Przegląd zagadnień omawianych w pracy

Narzędzia analizy tektury

- porównywanie tekstur
- synteza i rozkład FRO (orientacje, składowe idealne)
- wyznaczanie FB i FRO

Narzędzia analizy mikrostruktury

- analiza topologiczna
- analiza orientacji, dezorientacji
- analizy korelacyjne
- analiza wskaźników IQ i C
- szacowanie frakcji zrekrystalizowanej

Badania rekrystalizacji w miedzi

- Analiza składowych idealnych
- Pomiary EBSD
- Szacowanie energii zgromadzonej
- Hipoteza progu

Modelowanie rekrystalizacji

- model typu Monte-Carlo
- model typu Vertex
- model mieszany

Algorytmy genetyczne w IM

po odkształceniu

po rekrystalizacji

IQ=0 IQ=255

Współczynnik jakości obrazu (IQ) zależy głównie od stopnia niedoskonałości sieci krystalicznej @ stopnia rekrystalizacji.

Zalety proponowanej metody

- wynik ilościowy wraz z oszacowaniem błędu
- pomiar Xv "przy okazji" badania EBSD
- łatwa automatyzacja
- metoda nie niszcząca

Możliwe zastosowania

- wyznaczanie frakcji zrekrystalizowanej
- pomiar proporcji w materiałach dwufazowych
- oznaczanie stopnia pokrycia cienką warstwą

Postawienie problemu

 krytyczna wartość odkształcenia (85%-90%), granica pomiędzy teksturą typu odkształcenia a czystą sześcienną

hipotezy zorientowanego wzrostu i zorientowanego zarodkowania

Założenia wstępne

- Wnioskowanie na podstawie danych statystycznych
- "Obiektywizacja" kryteriów oceny obserwowanych procesów
 - duża liczba pomiarów
- Prace wielokrotne pomiary różnych rejonów tej samej próbki
 - F.R.O. rozkładane na składowe idealne
 - rentgenowskie pomiary tekstury
 rentgenowskie pomiary tekstury

- tekstura (X, EBSD)
- składowe idealne
 - ji, energia zgromadzona
 - mapy ÉBSD ji, energia zgromadzona
 obserwacje TEM pzkład wielkości ziaren, asymetria kształtu)
 analiza lokalnych dezorientacji

Modelowanie rekrystalizacji

- testowanie możliwych mechanizmów
- weryfikacja hipotezy progu

∆= **70 %** :

- Całkowicie przypadkowe otoczenie pasm/ziaren sześciennych
- Dezorientacje wewnątrz-ziarnowe w pasmach/ziarnach sześciennych większe od 15°zarówno w kierunku ND jak i TD

 Dezorientacje wewnątrz-ziarnowe w małych ziarnach sześciennych mniejsze od 15°

∆= **90 %**

Preferencja orientacji C/S wokół pasm/ziaren sześciennych

 Dezorientacje wewnątrz-ziarnowe w pasmach/ziarnach znacznie mniejsze od 15° zarówno w kierunku ND jak i TD

- Wysoki poziom zdrowienia w pasmach/ziarnach sześciennych
- Zarodkowanie w obszarach międzyziarnowych
- Zarodkowanie homogeniczne
- Pojawienie się dużej ilości bliźniaków orientacji sześciennej

 Zarodkowanie zarówno w obszarach międzyziarnowych jak i pasmach przejściowych

 Wiele zarodków sześciennych umieszczonych w zdeformowanej matrycy

Brak bliźniaków

- A) zarodkowanie w obszarze po zdrowieniu
- B) zarodkowanie wewnątrz-ziarnowe (intragranular)
- C) zarodkowanie między-ziarnowe (intergranular)
- D) zarodkowanie homogeniczne

Kaskady ziaren bliźniaczych w przypadku Δ =70% i praktyczny ich brak w przypadku Δ =90%. Ciekawostka: podobny efekt zaobserwowano w Fe-Ni [Zaeferer].

Wnioski

- Za teksturę rekrystalizacji odpowiada zarówno zorientowany wzrost jak i zorientowane zarodkowanie (wysoki poziom zdrowienia w orientacji sześciennej oraz preferowane sąsiedztwo Cb/S)
- Wykształcenie się tekstury sześciennej możliwe jest tylko przy odpowiednio dużej różnicy w wartościach energii zgromadzonej dla poszczególnych składowych
- ✓ Zarodkowanie w obszarach międzyziarnowych oraz pasmach przejściowych występuje zarówno w przypadku ∆= 70 % jak i ∆= 90 % z tym, że:
 - $dla \Delta$ = 70 % : dominuje ten pierwszy mechanizm i prowadzi do tekstury pseudo-izotropowej
 - dla ∆= 90 % : oba mechanizmy są istotne i prowadzą do tekstury kubicznej

Hipoteza progu

Jeżeli założymy, że do uruchomienia każdego z mechanizmów potrzebne jest przekroczenie pewnego minimalnego progu różnicy gęstości dyslokacji, to w zależności od wielkości tego progu, w materiałach o różnym stopniu odkształcenia uruchamiać się będą różne mechanizmy.

SIBM Strain Induced Boundary Migration

IN Intergranular Nucleation

Model typu Monte-Carlo

1. Mikrostruktura

Model typu Monte-Carlo

$$J = \sum_{i=1}^{6} \sigma(g_{0,}g_{i})$$

$$J' = \sum_{i=1}^{6} \sigma(g_0', g_i)$$

$$\Delta E = \left(J^* + H_0^*\right) - \left(J + H_0\right)$$

$$p = \begin{cases} m(\phi) & \Delta E^{(i)} \leq 0\\ m(\phi) \cdot \exp\left(-\frac{\Delta E^{(i)}}{kT}\right) & \Delta E^{(i)} > 0 \end{cases}$$
$$m(\phi, B, n) = m_{HAGB} \left(1 - \exp\left[-B(\phi / \phi_m)^n\right]\right)$$

KFMS, WFiIS, AGH

Model typu Monte-Carlo

- a) orientacje idealne
- b) tekstura odkształcenia
- c) tekstura rekrystalizacji
- d) tekstura modelowa (HSM)
- e) tekstura modelowa (HSM+MIS)

Model typu Vertex

- 1. Mikrostruktura
- 2. Zarodkowanie
- 3. Równania ruchu

Wypadkowa siła działająca na węzeł

$$\gamma_{ij} = H - H'$$

Ogólne równanie ruchu

$$D_{i}v_{i} = f_{i} - \frac{1}{2}\sum_{j}^{(i)} D_{ij}v_{j} \qquad i = 1,..., N$$
$$D_{i} = \sum_{j}^{(i)} D_{ij} \qquad D_{ij} \propto \frac{1}{m_{ij}}$$

Model typu Vertex

Transformacje topologiczne

 Δ – najmniejsza dopuszczalna odległość między węzłami, warunek zajścia transformacji

Model typu Vertex

Johnson-Mehl-Avrami-Kolmogorov (JMAK)

$$X_V = 1 - \exp(-Bt^n)$$

eksponenta Avramiego n = 2,037 wart. teor. n=2,0

Mikrostruktura początkowa (~2000 ziaren)

Tekstura: a) odkształcenia b) rekrystalizacji c) modelowana

Model typu Vertex

Hipoteza progu, zastosowana do modelu typu Vertex, prawidłowo odtwarza tekstury zarówno dla materiału odkształconego do 70% jak i do 90%. Po ustaleniu wartości progu (jednakowego dla obu materiałów), w modelu nie ma parametrów swobodnych.

Podsumowanie

- Kilkanaście programów narzędziowych (w tym pakiet do analizy tekstur oraz oprogramowanie do kompleksowej analizy map EBSD)
- Szereg metod badawczych (w tym porównywanie tekstur oraz dwie metody szacowania frakcji zrekrystalizowanej)
- Modele rekrystalizacji (model funkcji kompromisu, model Monte-Carlo, unikatowy model Vertex, model mieszany)
- Badania rekrystalizacji w miedzi (wiarygodne statystycznie podejście)
- Opis głównych mechanizmów rekrystalizacji w miedzi oraz hipoteza progu.

2000 - 2007

- 14 magistrantów (3 ► doktoranci)
- 2 współprowadzone doktoraty

dr Philippe Gerber

dr Krystian Piękoś

Dziękuję za uwagę

