

$$\Delta S_{mag} + \Delta S_{lat} = 0$$

Chłodzenie niekonwencjonalne _{czyli} gigantyczny efekt magnetokaloryczny i termoelektryczny w temperaturach pokojowych

Janus z Toboła

Katedra Fizyki Materii Skondensowanej Wydział Fizyki i Informatyki Stosowanej, AGH

Plan seminarium

Efekt magnetokaloryczny : MCE

- trochę historii,
- analogia do cyklu termodyn.,
- wkłady do entropii,
- gigantyczny MCE,
- interesujące materiały MCE.
- czy można naprawdę chłodzić ?

Co można podpowiedzieć od strony teorii materii skondensowanej (np. jak zasymulować stan paramagnetyczny, gdzie szukać G-MCE, etc.) a czego lepiej nie mówić

Efekt termoelektryczny : TE

- też trochę historii,
- "czworobok" termoelektryczny,
- wydajność zjawisk TE,
- interesujące materiały TE i koncepcje,

Co jesteśmy w stanie policzyć w układach termoelektrycznych - jak szukać efektywnych TE (domieszkowane półprzewodniki).

Podsumowanie + kolaboracja

Historia MCE

(1881) E. Warburg, żelazo grzeje się po włożeniu do pola magnetycznego ~0.5-2 K/1T, *Ann. Phys.*

(1926) P. Debye (Nobel 1936, chemia)

(1927) W. Giauque (Nobel 1949, chemia)

wyjaśniają efekt poprzez (roz)magnesowanie adiabatyczne - porządek/nieporządek momentów magnetycznych w (bez) B bez wymiany Q

(1997) Odkrycie gigantycznego efektu MCE K. A. Gschneider & V. Pecharsky (Ames Lab., USA), PRL (1997)

<u>Efekt magnetokaloryczny</u> jest cechą właściwą magnetycznych ciał stałych; jest największy w pobliżu temperatury przejścia w stan nieuporządkowany magnetycznie

Adiabatyczne magnezowanie / rozmagnesowanie

Analogia (klasyczny cykl termodyn.)

Cykl magnesowanie/rozmagnesowanie

W cyklu idealnym Carnot:

$$\Delta Q_C = T_C (S_B - S_A)$$

$$\eta = \frac{\Delta W}{\Delta Q_H} = 1 - \frac{T_C}{T_H} \qquad \qquad \Delta W = \oint P \, dV = (T_H - T_C)(S_B - S_A)$$

$$\Delta Q_H = T_H (S_B - S_A)$$

Gdzie można spodziewać się MCE ?

```
Rodzaje przejść fazowych (I & II):
FM-PM,
AFM-PM,
AFM-FM (ale mniejszy efekt !)
```

Rodzaje materiałów: Ferromagnetyki, ferrimagnetyki, antyferromagnetyki, ferromagnetyki niejednorodne, amorficzne, superparamagnetyki,

Najsilniejszy efekt w układach z przejściem magneto-strukturalnym np. MnAs, Gd(Si-Ge), La-Fe-Si, MnFe(As-P)

Parametry magnetokaloryczne układu

 $\Delta T_{s} (\Delta T_{ad})$ - Zmiana temperatury w procesie adiabatycznym (parametr intensywny)

 ΔS_T - Zmiana entropii w procesie izotermicznym (parametr ekstensywny)

$$\Delta T_{S} = \left(T(S)_{H_{2}} - T(S)_{H_{1}} \right)$$

$$\Delta S_T = S(T)_{H_2} - S(T)_{H_1} = \int_0^T \frac{C(T)_{p,H_2} - C(T)_{p,H_1}}{T} dT$$

$$\Delta S_T = \int_0^H \left(\frac{\partial M(T,H)}{\partial T}\right)_{p,H} dH$$
$$\Delta T_S = \int_0^H \left(\frac{T}{C(T,H)} \times \frac{\partial M(T,H)}{\partial T}\right)_{p,H} dH$$

Relacja Maxwella

$$\left(\frac{\partial S(T,H)}{\partial H}\right)_{p,T} = \left(\frac{\partial M(T,H)}{\partial T}\right)_{p,H}$$

Burriel, 2007

Warunki pojawienia się G-MCE

-RCP = $\Delta S_{M} \Delta T_{ad} = B (M_{1} - M_{2})$ (relative cooling power)

-typ przejścia magnetycznego,
-uporządkowanie magnetyczne,
-własności magneto-elastyczne

Entropia (elektronowa, magnetyczna, sieciowa)

$$S_{T} = S_{e} + S_{m} + S_{lat}$$

$$S_{m}(T,B)$$

$$S_{m}(T,B)$$

$$S_{m}(T,B)$$

$$S_{m}(T,B)$$

$$S_{m}(T,B)$$

$$S_{m}(T,B)$$

$$S_{m}(T,B)$$

$$T \sim T_{pologiowa}$$
Pojemność cieplna

$$C_{p}(B,T)$$

$$C_{p}(B,T)$$

$$M = \frac{-T.\Delta S_{m}}{C_{p}(B,T)}$$

$$\Delta T_{max}$$

Pomiary MCE

Krzywe magnetyzacji

$$\Delta S_m(T, \Delta B) = \int_0^B \left(\frac{\partial M}{\partial T}\right)_{\mathbf{B}} dB \quad \text{oraz} \quad C_p(T, B)$$

$$\Delta T_{max}(T, \Delta B) = -\frac{T}{C_p(T, B)} \Delta S_m(T, \Delta B)$$

Giant Magnetocaloric Effect in Gd₅(Si₂Ge₂)

V. K. Pecharsky and K. A. Gschneidner, Jr.

Ames Laboratory and Department of Materials Science and Engineering, Iowa State University, Ames, Iowa 50011-3020 (Received 22 November 1996)

An extremely Transition-metal-based a change in the Transition-metal-based magnetocaloric magnetic refrigerants hen subjected to 2 magnetic field) is due to a first 1e magnetic field

ER

Itinerant-electron metamagnetic transition and large magnetocaloric effects in $La(Fe_xSi_{1-x})_{13}$ compounds and their hydrides

Inverse magnetocaloric effect in ferromagnetic Ni–Mn–Sn alloys LETTERS PRL 78, 4494 (1997)

Nature 415, 150 (2002)

PRB 67, 104416 (2004)

Nature Mat. 4, 450 (2005)

Nature Mat. 5, 803 (2006)

Ambient pressure colossal magnetocaloric effect tuned by composition in Mn_{1-x}Fe_xAs

ARIANA DE CAMPOS¹, DANIEL L ROCCO¹, ALEXANDRE MAGNUS G. CARVALHO¹, LUANA CARON¹, ADELINO A. COELHO¹, SERGIO GAMA¹*, LUZELI M. DA SILVA¹, FLÁVIO C. G. GANDRA¹, ADENILSON O. DOS SANTOS¹, LISANDRO P. CARDOSO¹, PEDRO J. VON RANKE² AND

manganites, RCo₂ Laves phases, La-Fe-Si

Seminarium WFIS, 11 maja 2007

Nowe materialy MCE (skok entropii)

K.Gschneider, 2007

Nowe materialy MCE (skok temperatury)

K.Gschneider, 2007

Gigantyczny MCE – potrzeba magnesów

Magnetic Bussiness & Technology (2007)

Active magnetic refrigerator (AMR), np. stopy Gd, La-Fe-Si 0.1-100 kg / AMR Źródła pola magnetycznego Nd-Fe-B 0.1-100 kg / AMR Gschneider, 2007

TOSHIBA rotary device (2004)

Magnetyczne lodówki w pobliżu temperatury pokojowej

(S-growth curve for new technologies)

Name	Location	Announcement Date	Туре	Max. Cooling Power (W)	Max ∆T (K)	Max. Magnetic Field ^ь (T)	Regenerator Material	Ref.
Los Alamos Natl. Lab.	Los Alamos, New Mexico, USA	March 2002	Charging- discharging a coil, no moving parts	3	15	1.7(S)	Gd pwdr.	Blumenfeld et al. (2002)
Univ. Quebec, Trois Rivieres	Trois Riveires, Quebec, Canada	Feb. 2004	Reciprocating	2	14	2.0(S)	Gd-R alloys∘	Richard <i>et al.</i> (2004)
George Washington Univ.	Ashburn, Virginia, USA	June 2005	Reciprocating	?	5	2.0(P)	Gd pwdr.	Shir e <i>t al.</i> (2005)
Nanjing Univ.	Nanjing, China	Sept. 27, 2005	Reciprocating	40	25	1.4(P)	Gd pwdr. Gd₅(Si,Ge) ₄ pwdr.	Lu <i>et al.</i> (2005)
Tokyo Inst. Tech.	Yokohama, Japan	Sept. 27, 2005	Rotary	60	4	0.77(P)	Gd-R alloys⁰	Okamura et al. (2005)
Univ. Victoria	Victoria, Canada	Sept. 27, 2005	Reciprocating	?	50	2.0(S)	Gd-R alloys⁰	Rowe, <i>et al.</i> (2005)
Natl. Inst. Appl. Sci.ª	Strasbourg, France	Sept. 27, 2005	Rotary	360	14	2.4(P)	Gd	Vasile, Müller (2005)ª
Astronautics	Madison, Wisconsin, USA	Sept. 27, 2005	Rotary	50	25	1.5(P)	Gd, Gd alloys∘ La(Fe,Si) ₁₃ H	Zimm (2005)

2nd International Conference of the IIR on Magnetic Refrigeration at Room Temperature, Portoroz, 11-13 April, 2007

Entropy contributions and relations to ab initio calculations

$$\mathbf{S}_{tot} = \mathbf{S}_{el} + \mathbf{S}_{mag} + \mathbf{S}_{lat}$$

adiabatic process

$$\Delta S_{mag} + \Delta S_{lat} = 0$$

 $S_{el} \approx \gamma T$ often sufficient

in MCE systems smaller than S_{mag}, S_{lat}

$$S_{lat}(T, h^{ext}) = \left[-3R \ln \left(1 - \exp \left(-\frac{\tilde{\Theta}_D}{T} \right) \right) + 12R \left(\frac{T}{\tilde{\Theta}_D} \right)^3 \int_{0}^{\tilde{\Theta}_D/T} \frac{x^3}{\exp(x) - 1} dx \right]$$

BUT this can be approximatively done e.g. from Debye model

Precise estimations can be made for electronic and phonon structure if DOS is known. With Debye temperature S_{lat} estimation may give good result and allows to interpret ΔS jump observed experimentally.

for
$$h^{\text{ext}} = 0$$
, the intergral gives \mathbf{S}_{el}
 $S_{mag}(T, h^{ext}) = R \left[\sum_{\sigma} \int_{-\infty}^{\mu} \ln \left(1 + e^{-\beta(\varepsilon - \mu)} \right) \rho_{\sigma}^{el}(\varepsilon) d\varepsilon \right]$
 $+ \frac{1}{kT} \sum_{\sigma} \int_{-\infty}^{\mu} (\varepsilon - \mu) \rho_{\sigma}^{el}(\varepsilon) f(\varepsilon) d\varepsilon \right]$
de Oliveira, Eur. Phys. J. B (2004)
 $S_{lat} = R \left[-\int \ln \left(1 - e^{-\beta\hbar\tilde{\omega}} \right) \rho^{ph}(\tilde{\omega}) d\tilde{\omega} + \frac{1}{kT} \int \frac{\hbar\tilde{\omega}}{(e^{\beta\hbar\tilde{\omega}} - 1)} \rho^{ph}(\tilde{\omega}) d\tilde{\omega} \right]$

Phonon DOS is needed to estimate lattice contribution

Simulations of electronic structure above Curie temperature - DLM (disordered local moments)

- 1. Analogy with chemical alloy within the coherent potential approximation) CPA with 2 atoms on 1 site.
- atom A Fe^{up} (iron with magnetic moment 'up')
 atom B Fe^{down} (iron with magnetic moment 'down')
- 3. A and **B** atoms occupy the same crystallographic site.
- 4. For concentration 50% the total magnetic moment per site and unit cell is zero, but the 'local' magnetic moments may be **non-zero**.
- 5. CPA medium is used to **randomly distribute the magnetic moments** among the sites (like in **paramagnetic state**)

Ferromagnetic phase transitions in metals

Figure 3. Density of states for Fe in its paramagnetic disordered local moment state.

Gyorffy et al., J. Phys. F (1985)

KKR-CPA method Korringa-Kohn-Rostoker with coherent potential approximation $G(E) = \sum_{\mathbf{s}=(+,-)} \sum_{k=1}^{K} \int_{V_k} d^3 r \langle s, \mathbf{r} + \mathbf{a}_k | G(E) | s, \mathbf{r} + \mathbf{a}_k \rangle.$ Stopa, Kaprzyk, Tobola, Bansil, Kaprzyk, Mijnarends, Tobola, J.Phys.CM (2004) Phys. Rev. B (1999) conventional KKR Green function novel formulation of KKR $\langle s', \mathbf{r}' + \mathbf{a}_{k_{CP}} | G^{A(B)}(E) | s, \mathbf{r} + \mathbf{a}_{k_{CP}} \rangle$ $\langle s', \mathbf{r}' + \mathbf{a}_{k'} | G(E) | s, \mathbf{r} + \mathbf{a}_{k} \rangle$ $= -\sum_{\mathbf{r}} \ J^{A(B)}_{\sigma L}(s^{\,\prime}\,\mathbf{r}^{\,\prime}) Z^{A(B)}_{\sigma L}(s\,\mathbf{r})$ $= -\sum_{\mathbf{r}} J^{(k)}_{\sigma L}(s'\mathbf{r}') Z^{(k)}_{\sigma L}(s\mathbf{r}) \delta_{kk'}$ $+\sum_{\sigma'L'\sigma L} Z^{A(B)}_{\sigma'L'}(s'\mathbf{r}') T^{A(B)}_{k_{CP}\sigma'L',k_{CP}\sigma L} Z^{A(B)}_{\sigma L}(s\mathbf{r})$ + $\sum_{\sigma'L'\sigma L} Z^{(k')}_{\sigma'L'}(s'\mathbf{r}') T^{CP}_{k'\sigma'L',k\sigma L} Z^{(k)}_{\sigma L}(s\mathbf{r})$ $T_{k'\sigma'L',k\sigma L}^{CP} = \frac{1}{N} \sum_{\mathbf{k}=p, \tau} \left[\tau_{CP}^{-1} - B(E, \mathbf{k}) \right]_{k'\sigma'L',k\sigma L}^{-1}$ $G(E) = -\frac{d}{dE} \left\{ \frac{1}{N} \sum_{\mathbf{k} \in \mathbf{P}_{Z}} \operatorname{Tr} \ln[G_{0}^{-1}(E, \mathbf{k}) + D^{(j)} - D_{CP}]^{-1} \right\}$ **CPA** $c_A T^A + c_B T^B = T^{CP}$. $-\frac{d}{dE}\left\{c_{A}\operatorname{Tr}\ln[\Psi_{A}^{-1}G^{A}]+c_{B}\operatorname{Tr}\ln[\Psi_{B}^{-1}G^{B}]\right\}$ Density of states $N(E) = -\frac{1}{\pi} \operatorname{Im} \int_{-\infty}^{E} dEG(E)$ $-\operatorname{Tr} \ln G^{CP} + \frac{d}{dE} \left\{ \sum_{k \neq k < n} \operatorname{Tr} \ln[\Psi^{(k)}] \right\}, \qquad (2.22)$ Lloyd formula Fermi energy $N(E_F) = Z$ Kaprzyk et al. Phys. Rev. B (1990)

Ground state properies KKR-CPA code

Total density of states DOS

Component, partial DOS

Total magnetic moment

Spin and charge densities

Local magnetic moments

 $\mu^{(k)} = \mu_B \int_{\Omega_k} d^3 r s^{(k)}(\mathbf{r})$

Fermi contact hyperfine field

$$H_{Fermi} = \frac{8}{3} \pi \mu_{B} [\rho_{\uparrow}(0) - \rho_{\downarrow}(0)]$$

Bands E(**k**), total energy, electron-phonon coupling, magnetic structures, transport properties, photoemission spectra, Compton profiles, ...

$$N(E) = -\frac{1}{\pi} \operatorname{Im} \int_{-\infty}^{E} dE G(E)$$

$$\rho_{\sigma}(E) = \frac{\partial}{\partial E} N_{\sigma}(E).$$

•

 $\mu = N_{+}(E_{F}) - N_{-}(E_{F})$

$$\rho_{\sigma}^{(k)}(\mathbf{r}) = -\frac{1}{\pi} \int_{-\infty}^{E_F} dE \langle \sigma, \mathbf{r} + \mathbf{a}_k | G(E) | \sigma, \mathbf{r} + \mathbf{a}_k \rangle$$

2nd International Conference of the IIR on Magnetic Refrigeration at Room Temperature, Portoroz, 11-13 April, 2007

MnAs (magneto-structural transition) at 318 K

Hexagonal NiAs-type structure (P63/mmc, #194) a = 3.730 Å, c = 5.668 Å, Z=2

Orthorhombic MnP-structure (Pnma, #62) a = 5.72 Å, b = 3.676 Å, c = 6.379 Å, Z=4

2nd International Conference of the IIR on Magnetic Refrigeration at Room Temperature, Portoroz, 11-13 April, 2007

MnAs in ferro & 'paramagnetic' state

DLM (disordered local moments)

In excellent agreement with experimental data

MnP-type

Fe,P (magneto-elastic transition) at 217 K

Hexagonal (P-62m, #189) a = 5.872 Å, c = 3.460 Å, Z=3

T_c increases from 217 K for Fe₂P to 235 K for Fe₁₈₅Ru₀₁₅P

Fruchart et al., Physica A (2005)

Influence of electrons polarisation at E_F in increase of T_C , presence of small moment 0.4 μ_B/Ru , similar effect in $Fe_{2-x}Ni_xP$

Bacmann et al., JMMM (1994)

MnFe(P-As)

	Neutrons	KKR-CPA
Fe(3f)	1.24	1.25
Mn(3g)	2.55	2.95

Fe₂P

	Neutrons	KKR-MT	KKR-FP
Fe(3f)	0.59	0.80	0.60
Fe(3g)	2.23	2.33	2.40

2nd International Conference of the IIR on Magnetic Refrigeration at Room Temperature, Portoroz, 11-13 April, 2007

Fe,P (ferromagnetic vs. 'paramagnetic' DLM state)

Entropy contributions

MnAs

$\Delta S_{mag} = R \ln(M_{Mn}+1) = 11.3 J/(m \text{ very close to } \Delta S_{exp} = 12.8 J/(m \text{ scalar})$	ol K) ol K) fi Gronve	since M _{Mn} = 2 rom thermodynam old et al., Acta Chen	<mark>.9 μ_B in PM state</mark> ic data 1.Scand. (1970)	
S _{lat} ~ 69 J/(mol K)	since Debye	Θ _D = 310 K temp= ? (250 K)	in NiAs-type in MnP-type	
$\Delta S_{el} = +0.67 \text{ J/(mol K)}$	$\Delta S_{el} = -$	+1.35 J/(mol K) 1	from γT	
Fe_2P $\Delta S_{mag} = R \ln(M_{Mn}+1) = 9.4 \text{ J/(model)}$	ol K)	since M _{Fe(3g)} = 2.1	μ _B in PM state	
S _{lat} ~ 57 J/(mol K)	since	$\Theta_{\rm D} = 420 \ {\rm K}$		

 $\Delta S_{el} = -0.2 \ J/(mol \ K)$ $\Delta S_{el} = -0.6 \ J/(mol \ K)$ from $\gamma \ T$

 $\Delta S_{mag}(exp) = 0.36 \text{ J/(mol K)}$ B = 1.3 T

Własności termoelektryczne

A. Joffe

ELEMENTY CHŁODZĄCE $\eta = (T_H - T_C)(\gamma - 1)(T_C + \gamma T_H)^{-1}$ $\gamma = (1 + ZT_H)^{-1}$ $\eta = (\gamma T_C - T_H)[(T_H - T_C + (\gamma + 1)]^{-1}]^{-1}$

"Czworobok" termoelektryczny

$$\begin{bmatrix} \underline{j} \\ q \end{bmatrix} = \begin{bmatrix} L_{EE} L_{ET} \\ L_{TE} L_{TT} \end{bmatrix} \begin{bmatrix} E \\ -\nabla T \end{bmatrix}$$

natężenie pola elektr.

gradient temperatury

siła termoelektryczna

E= S ∇ T

$$S = L_{EE}^{-1}L_{ET}$$

1770 Tallin 1854 Berlin

Barwna postać romantyzmu

- wraz z Goethe tworzy nową teorię barw (przeciwną Newtonowi),
- gradient temperatur powoduje zmiany pola magnetycznego Ziemi !!,
- doświadczenia Oersteda (1820) "oślepiają" uczonych;

Wyjaśnienie : termomagnetyzm - "magnetyczna" polaryzacja metali i stopów wskutek różnicy temperatur !!

$$\begin{bmatrix} \vec{L} \\ q \end{bmatrix} = \begin{bmatrix} L_{EE} L_{ET} \\ L_{TE} L_{TT} \end{bmatrix} \begin{bmatrix} E \\ - \nabla T \end{bmatrix}$$
 Efekt Peltier (1834)
strumień ciepła $\mathbf{q} = \Pi \mathbf{j}$ gęstość prądu
współczynnik Peltier $\Pi = L_{TE} L_{EE}^{-1}$

1785 Ham 1845 Paris

odwrotny proces do efektu Seebecka

Efekt Thomsona (1834)

wydzielanie się ciepła w obecności prądu j i gradientu temperatury dT/dx

$$Q = \frac{j^2}{\sigma} + \mu j \frac{dT}{dx}$$

Joule Thomson

 $\mu = T dS/dT$ $\Pi = T S$

Badanie stanów elektronowych w pobliżu powierzchni Fermiego $E(\mathbf{k})=E_{F}$

$$\vec{E(k)} = \frac{\prod^{2}(k_{x}^{2} + k_{y}^{2} + k_{z}^{2})}{2m}$$

Ruch elektronów w ciele stałym

Prędkość elektronów

$$\mathbf{v}_g = \frac{d\omega}{d\mathbf{k}} = \frac{1}{\Box} \frac{\partial E(\mathbf{k})}{\partial \mathbf{k}} = \nabla_{\mathbf{k}} E(\mathbf{k}) = \mathbf{v}(\mathbf{k})$$

W ogólności v nie jest równoległe do k (np. elipsoida), jest prostopadła do powierzchni izoenergetycznej E(k)

$$\mathbf{v} = \frac{\Box \mathbf{k}}{m^*} \quad \Leftrightarrow \quad E(\mathbf{k}) = \frac{\Box^2 k^2}{2 m^*}$$

v(k) równoległe k (sferyczna powierzchnia Fermiego)

Przyspieszenie elektronów

W ogólności tensor masy efektywnej jest niezależny od prędkości elektronu

$$n(E_F) \propto \frac{\partial E(\mathbf{k})}{\partial \mathbf{k}}$$

$$(m_{ij})^{-1} \propto \frac{\partial^2 E}{\partial k_i \partial k_j}$$

Gęstość stanów dla E=E_F można uzyskać w pomiarach ciepła właściwego oraz podatności paramagnetycznej Masy efektywne można uzyskać w pomiarach dHvA oraz pomiarach transportowych

$\begin{vmatrix} \dot{L} \\ q \end{vmatrix} = \begin{vmatrix} L_{EE} & L_{ET} \\ L_{TE} & L_{TT} \end{vmatrix} \begin{vmatrix} E \\ \nabla T \end{vmatrix}$ Kinetyczna teoria Zimana

 $\sigma(T) = e^2/3 \int dE N(E) v^2(E) \tau(E,T) [-\partial f(E)/\partial E]$

Przewodność elektryczna

 $S(T) = e(3T\sigma)^{-1} \int dE N(E) v^{2}(E) E \tau (E,T) [-\partial f(E) / \partial E] =$

 $(3eT\sigma)^{-1}\int dE \sigma(E,T) E \left[-\partial f(E) / \partial E\right]$

Siła termoelektryczna (współczynnik Seebecka)

 $N(E) = (2\pi)^{-3} \int \delta(E(k)-E) dk$ DOS (density of states)

Przewodność cieplna

$$\kappa/\sigma \approx L_0 T$$
, $L_0 = 2.45$ $\kappa \approx -L_{\tau\tau}$

prawo Wiedemanna-Franza, L₀ liczba Lorentza

Przybliżenie czasu relaksacji w równaniu Boltzmanna

$ZT = \frac{S^2}{\rho \kappa}$

Chevrel phases

Skutterudites

Materiały TE

Electronic structure peculiarities

Half-Heusler(VEC=18)Semiconductors/semimetals(CoTiSb, NiTiSn, FeVSb, ...)9 + 4 + 5 = 18

Skutterudites (VEC=96) semiconductors/semimetals (CoSb₃, RhSb₃, IrSb₃, CoP₃ ...) $4 \times 9 + 12 \times 5 = 96$

<u>Chevrel phases</u> (VEC=72) semiconductors/semimetals (TiMo6Se8, Zn2Mo6Se8, ...) $8 \times 4 + 6 \times 6 = 68$ (*p-d* Mo6Se8) 4 holes to energy gap

Skutterudyty: prototyp - minerał CoAs₃

Nazwa od miejscowości Skutterud (Norwegia), ważny kruszec kobaltu

Im-3 space group		
No. 204 (bcc)		
Co:8c	(1/4,1/4,1/4)	
Sb:24g	(0,u,v)	
void: 2a	(0,0,0)	
u=0.335, v=0.159		

Najbardziej badane układy termoelektryczne w ostatnich 15 latach (USA, Japonia, Niemcy, Francja, ..., Polska), - najbliższe realizacji koncepcji Slacka (1995) : **PGEC** =,,**phonon-glass** electron crystal" -przewodnictwo elektryczne jak w metalach (domieszkowanie) – znakomite, -siła termoelektryczna – duża (poziom Fermiego w pobliżu przerwy energet.) -przewodnictwo cieplne jak w amorfikach – słabe, specyficzna dynamika sieci – rozpraszanie fononów poprzez "rattling"

Filled skutterudites RT_4X_{12} (e.g. $LaFe_4Sb_{12}$)Fe: 8c(1/4,1/4,1/4)Sb: 24g(0,u,v)La:2a(0,0,0)

Density of states DOS vs. transport function $\sigma(E)$

Small substitution 0.01-0.05 el./Co₄Sb₁₂ $\rightarrow \Delta E_F \approx 1-2$ mRy

Doped CoSb₃: FS vs. Hall concentration

L.Chaput, ... J.T., PRB (2005)

Doped CoSb₃: electrical resistivity

Ekperyment (z literatury)

Obliczenia

Przybliżenie stałego czasu relaksacji (jedyny swobodny parametr) dobieramy tak aby zgodność z krzywymi eksper. była satysfakcjonująca (t = 10⁻¹⁴ s)

Doped CoSb₃: thermopower

Experiment

Theory

Przybliżenie stałego czasu relaksacji nie ma znaczenia, bo współczynnik Seebecka od niego NIE ZALEŻY – znakomity test dla teorii !!!

Heusler phases X₂YZ, XYZ (1903)

DO₃ structure

Fm3m (typ Fe₃Al) X : (0,0,0), (1/2,1/2,1/2) X : (3/4,3/4,3/4) Z: (1/4,1/4,1/4)

Normal Heusler 12,

Fm3m (typ Cu₂MnAl) X : (0,0,0), (1/2,1/2,1/2) Y : (3/4,3/4,3/4) Z: (1/4,1/4,1/4)

Half-Heusler C1, *F-43m* (typ AgMgAs) *X* : (0,0,0) 4a *Y* : (3/4,3/4,3/4) 4d *Z*: (1/4,1/4,1/4) 4c

Crystal stability sp², d orbitals

Przejście półprzewodnik-metal Ti_{1-x}Sc_xNiSn

W stopach nieuporządkowanych E(k) są pasmami o zespolonej energii Re E(k) --> prędkość grupowa ; Im E(k) --> czas życia nośników

Prędkości i czasy życia (FS)

Stopa, Tobola, Kaprzyk, J. Phys. CM (2006)

Semiconductor to metal transition in (Ti-Sc)NiSn half-Heusler

Thermopower

Horyn et., JALCOM (2004) Experiment

> (m 11)

KKR-CPA results

$$\sigma(E) = \frac{2e^2}{3(2\pi)^3\hbar} \int\limits_{\Sigma(E)} dS_{\mathbf{k}} v_{\mathbf{k}} \tau_{\mathbf{k}}$$

 $S_{RT} = (S/T)_0 * 300 \text{ K}$

$$S = -\frac{\pi^2}{3} \frac{k_B^2 T}{e} \left. \frac{\partial \ln \sigma(E)}{\partial E} \right|_{E_F}$$

Residual resitivity T=0 K

 $La_3Cu_3Sb_4$

Estimation of thermopower from DOS

Zamiast pods umowania

The limitations of magnetic refrigeration are only in the minds of the individual engineers or scientists.

Karl Gschneider, 2007

Jednak ograniczenia i problemy MCE

Better magnetic refrigerants Second order magnetic transformation materials with higher MCE

Production of large quantities of magnetic refrigerant Eventually tons per day

Permanent magnets Higher strength Smaller volume Lower costs

Engineering Improved designs

Thermodynamic cycles Improve current AMR cycle New cycles

First order magnetic transition materials Fully utilize the structural entropy Hysteresis Time dependence

- 5:4 Gadolinium-Silicon-Germanium
 - Gd₅(Si_{1-x}Ge_x)₄
- Manganites
 - $(R_{1-x}M_x)MnO_3$
 - R Lanthanide, M Alkali, Alkaline earth
- Lanthanum-Iron-Silicon
 - R(Fe_{1-x}Si_x)₁₃
- Manganese-Antimony Arsenide
 - MnAs_{1-x}Sb_x
- Iron-Manganese-Arsenic Phosphides
 - (FeMn) ($P_{1-x}As_x$)
- Heusler Alloys
 - Ni_{2+x}Mn_{1-x}Ga
- Gadolinium Benchmark Material

Współpraca

B. Wiendlocha, S. Kaprzyk

Faculty of Physics and Applied Computer Science AGH, Kraków, Poland

R. Zach

Institut of Physics and Computer Modeling, Cracow Technical University, Podchorazych, Kraków, Poland

E. K. Hlil, D. Fruchart

Laboratoire de Cristalographie, Centre National de la Recherche Scientifque, Grenoble France

L. Chaput, P. Pecheur, H. Scherrer

Laboratoire de Physique des Materiaux, INPL Ecole Nationale Supérieure des Mines, Nancy, France Podziekowania za materiały:

Home page

Organizen

Scientific Committee

Invited Speakers

Programme

Location

Working Party

Contact

Sponsors

2nd International Conference of the IIR on Magnetic Refrigeration at Room Temperature

11. - 13. April 2007, Portoroz, Slovenia

University of Ljubljana Faculty of Mechanical Engineering

Institut International du Froid International Institute of Refrigeration

