CHI-SQUARE TEST

1. You believe that people who die from overdoses of narcotics die rather young. To test this theory you have obtained the following distribution of # of deaths from overdoses:

Age interval	15–19	20-24	25–29	30-34	35–39	40-44	45-49
Number							
of deaths	40	35	32	10	13	13	4

Total: 147.

An appropriate H0 hypothesis would be that equal numbers die in all seven age groups (i.e. 147/7 = 21). Perform the Pearson's test to check whether H0 cannot be rejected.

2. A sample, of the size equal to 200, has been taken from a population whose property follows an unknown distribution. The 200 results (frequencies) have been grouped into 10 classes of equal width (0.5) — they are given in the two first columns of the table below. We form a conjecture: the distribution is uniform over the interval [45,50]. Verify this hypothesis (with $\alpha = 0.05$).

class	n_i	$n \cdot \pi_i$	$(n_i - n \cdot \pi_i)^2$	$(n_i - n\pi_i)^2/n\pi$		
midpoint	\exp	theory		(
45.25	23	20				
45.75	19	20				
46.25	25	20				
46.75	18	20				
47.25	17	20				
47.75	24	20				
48.25	16	20				
48.75	22	20				
49.25	20	20				
49.75	16	20				
$\sum n_i = 200; \sum n\pi_i = 200$						

3. Let the result of a random experiment be classified by two attributes – eye color and hair color. One of the attributes, eye color, can be divided into mutually exclusive and exhaustive (filling the whole event space) events:

X1 – blue eyes; X2 – brown eyes; X3 – grey eyes; X4 – black eyes; X5 – green eyes

The other attribute can be also divided into four mutually exclusive and exhaustive events:

Y1 – black hair; Y2 – brown hair; Y3 – black eyes; Y4 – red hair.

The experiment is performed by observing n = 500 people and each of them are categorized according to eye color and hair color. Let $Xi \cap Yj$ be the event that a person with eye color Xi; i = 1, 2, 3, 4, 5 and hair color Yj; j = 1, 2, 3, 4. Let n_{ij} be the observed frequency of event $Xi \cap Yj$ and $p_{ij} = n_{ij}/N$ – its probability, where N is the total number of events.

The situation (outcome of the experiment) looks like this

EYES↓	HAIR	4 classes -	\rightarrow		
5 classes	1	2	3	4	
1	50	87	5	8	$\sum = n_{1.} = 150$
2	40	69	60	11	$\sum = n_{2.} = 180$
3	15	13	42	5	$\sum = n_{3.} = 75$
4	5	27	17	1	$\sum = n_{4.} = 50$
5	15	4	1	25	$\sum = n_{5.} = 45$
	$\sum = n_{\cdot 1}$	$\sum = n_{\cdot 2}$	$\sum = n_{\cdot 3}$	$\sum = n_{\cdot 4}$	= N
	= 125	= 200	= 125	= 50	= 500

Test the hypothesis that Xi and Yj are independent events.

Hint: The X-Y independence hypothesis is consistent with the statement: $p_{ik} = p_{i.} \times p_{.k}$ or $n_{ik} = n_{i.}n_{.k}/n$ On the other hand, we have :

$$p_{i\cdot} = \frac{n_{i\cdot}}{n} \qquad p_{\cdot k} = \frac{n_{\cdot k}}{n}$$

Consequently, the χ^2 statistic is:

$$\chi^2 = n \sum_{i=1}^{5} \sum_{k=4}^{c} \frac{(n_{ik} - n_{i.} n_{.k}/n)^2}{n_{i.} n_{.k}}.$$
(1)

4. Often frequency data are tabulated according to two criteria, with a view toward testing whether the criteria are associated. Consider the following analysis of the 157 machine breakdowns during a given period.

	MACHINE				Total
	Α	В	С	D	per shift
Shift 1	10	6	13	13	41
Shift 2	10	12	19	21	62
Shift 3	13	10	13	18	54
Total per machine	33	28	44	52	157

We are interested in whether the same percentage of breakdown occurs on each machine during each shift or whether there is some difference due perhaps to untrained operators and/or other factors peculiar to a given shift.