(2) - CONDITIONAL PROBABILITY; BAYES THEOREM

1. A - defective using the 1 st way;
B - defective using the 2nd way;
(a) $\mathcal{P}(\bar{A})=0.95 \cdot 0.9 \cdot 0.7=0.599 ; \quad \mathcal{P}(\mathcal{A})=0.401$
$\mathcal{P}(\bar{B})=0.75^{2}=0.56 ; \quad \mathcal{P}(B)=0.44$
$\mathcal{P}(A)<\mathcal{P}(B) \rightarrow 1$ st way better
(b) $\mathcal{P}($ defective $)=\mathcal{P}(1$ st $) \mathcal{P}(A)+\mathcal{P}(2 n d) \mathcal{P}(B)=0.5 \mathcal{P}(A)+0.5 \mathcal{P}(B)=0.58$
2. (a) $\mathcal{P}($ defective $)=\sum_{i} \mathcal{P}\left(\right.$ plant $\left._{i}\right) \mathcal{P}\left(\right.$ defective $\left.^{\text {plant }_{i}}\right)=0.0108$
(b) similar formula $\mathcal{P}=0.107$
(c) $\mathcal{P}=\mathcal{P}(1 s t) \mathcal{P}(2 n d)+\mathcal{P}(2 n d) \mathcal{P}(1 s t)=0.17$
3. $\mathcal{P}(7)$ in the 1 st throw $=1 / 6 ; \mathcal{P}(11$ in the 2 nd $=1 / 18$ or vice versa $=1 / 54$
4. dependent $\mathcal{P}(A \cap B)=0.04 \neq \mathcal{P}(A) \cdot \mathcal{P}(B)$
$\mathcal{P}(A \mid B)=\frac{\mathcal{P}(A \cap B)}{\mathcal{P}(B)}=0.5$
5. You should consider the 6×6 diagram; BUT only eleven out of 36 cases have (at least one) 4. These are
$(4,1),(4,2),(4,3),(4,4),(4,5),(4,6),(1,4),(2,4),(3,4),(5,4),(6,4)$. So $\Omega=11$.
Then $\mathcal{P}(a)=2 / 11$ (5 appears only twice); $\mathcal{P}(b)=5 / 11$.
6. $\mathcal{P}($ not documented $)=(0.4)^{3} \rightarrow \mathcal{P}($ documented $)=1-0.4^{3}=0.936$

$$
1-0.4^{n} \geq 0.99 ; \quad n \geq \ln 40
$$

7. $\mathcal{P}($ sick \mid test positive $)=\frac{\mathcal{P}(\text { test positive } \mid \text { sick }) \times \mathcal{P}(\text { sick })}{\mathcal{P}(\text { test positive })} \approx 0.17$
8. $\mathcal{P}($ taxi being green $)=0.41<0.5$!
9. First •

$$
\begin{gathered}
\mathcal{P}\left(F_{A B} \mid C h_{O A}\right) \mathcal{P}\left(C h_{O A}\right)=\mathcal{P}\left(C h_{O A} \mid F_{A B}\right) \mathcal{P}\left(F_{A B}\right) \quad \text { thus we have } \\
\mathcal{P}\left(F_{A B} \mid C h_{O A}\right)=\frac{\mathcal{P}\left(C h_{O A} \mid F_{A B}\right) \mathcal{P}\left(F_{A B}\right)}{\mathcal{P}\left(C h_{O A}\right)}=\ldots \\
\mathcal{P}\left(C h_{O A}\right)=\mathcal{P}\left(C h_{O A} \mid F_{O A}\right) \mathcal{P}\left(F_{O A}\right)+\mathcal{P}\left(C h_{O A} \mid F_{A A}\right) \mathcal{P}\left(F_{A A}\right)+\mathcal{P}\left(C h_{O A} \mid F_{A B}\right) \mathcal{P}\left(F_{A B}\right)=\ldots 0,2525 \\
\ldots=\frac{0.5 \times 0.15}{0,2525} \approx 0,297 .
\end{gathered}
$$

10. Second •
the portions of unit square unfavorable for meeting to take place are two right isosceles triangles in the upper-left and bottom-right corners of the square; the side of each triangle is $3 / 4$ hour. So the total unfavorable area is $2 \times 3 / 4 \times 3 / 4 \times 1 / 2=9 / 16$. The favorable area $=7 / 16$
