RANDOM VARIABLE - BASIC CONCEPTS

1. A drunk wanders out of a bar thoroughly inebriated. At each step he will move to the right one (1) meter with probability p or to the left one meter with $\mathcal{P}=1-p$. How many meters from the entrance to the bar do you expect the drunk to be after n steps?
$X_{n}-\#$ of meters after n steps; $E(X)$ of a single step is (two-way RV)
$E(X)=1 \times p+(-1) \times(1-p)=2 p-1$.
$E\left(X_{n}\right)=\sum_{i=1}^{n} E(X)=\sum_{i=1}^{n} 2 p-1=n(2 p-1)$.
Mark: for $p=1 / 2 \quad E\left(X_{n}\right)=0$
2. Show that $E(a X)=a E(X)$ if a is a constant and X is a continuous or discrete RV (consider both cases).
Show also $V A R(a X)=a^{2} V A R(X)$.
$\operatorname{VAR}(a X+b)=E\left(\left[(a X+b)^{2}\right]\right)-[E(a X+b)]^{2}=a^{2} E(X)^{2}+2 a b E(X)+b^{2}-a^{2} E(X)^{2}-$ $2 a b E(X)-b^{2}=a^{2} E(X)^{2}-a^{2} E(X)^{2}=a^{2} V A R(X)$.
Once you perform the necessary (and simple) calculations think - were they really necessary? The results can be justified by simple argumentation.
3. A sample consists of results: $2,3,3,4,4,4,5,5,5,6,6,7$. Compute: (a) μ; (b) σ^{2}.
4.5 AND 1.9
4. A discrete random variable X has the probability function :

x_{i}	-2	-1	2	5
$P\left(X=x_{i}\right)$	0.3	0.1	0.2	0.4

(a) sketch the cumulative distribution of X; (b) calculate the mean and variance for two random variables: $U=2 X-3$ and $V=2 X^{2}$. Comment on $p\left(U=u_{i}\right)$ and $p\left(V=v_{k}\right)$ values.
$E(U)=0.4 ; \quad V A R(U)=36.84 ; \quad E(V)=24.2 ; \quad V A R(V)=446.76$
mark: in the case of V-variable the two different values of $X(-2,2)$ are mapped into a single V (8). Thus:

$$
\mathcal{P}(V=8)=\mathcal{P}(X=-2)+\mathcal{P}(X=-2)
$$

5. The probability density function of the random variable X is given by:

$$
f(x)=\left\{\begin{array}{ccc}
0 & \text { for } & -\infty<x<0 \\
\sin x & \text { for } & 0 \leq x \leq \frac{1}{2} \pi \\
0 & \text { for } & \frac{1}{2} \pi<x<\infty
\end{array}\right.
$$

Find the cumulative distribution $F(x)$ and calculate $P(1 / 6 \pi<x<1 / 3 \pi)$.

Sketch the graphs of probability density function and cumulative distribution function and read out the calculated P from the graphs.

$$
F(x)=\int_{0}^{x} f(x) d x=1-\cos x \quad x \leq \frac{1}{2} \pi .
$$

$$
\mathcal{P}(1 / 6 \pi<x<1 / 3 \pi)=\frac{1}{2}(\sqrt{3}-1)
$$

6. A continuous random variable has a uniform distribution, i.e. its probability density function is constant in the whole interval. For example

$$
f(x)=C \quad \text { for } \quad x \in[0 ., 2 .]
$$

(a) find the value of the constant C.
(b) Calculate the expected value $E(X)$ and variance $\operatorname{VAR}(X)$.
$C=1 / 2 ; \quad E(X)=1 ; \quad \operatorname{VAR}(X)=1 / 3$
7. Given that the RV X has the probability density function

$$
f(x)=\frac{1}{2}(x+1) \quad \text { when } \quad-1<x<1
$$

and $f(x)=0$ elsewhere, calculate the expected value of X and the variance of X.
$1 / 3$ and $2 / 9$
8. Given that the RV X has the density probability function

$$
f(x)=\frac{1}{2 \sqrt{3}} \quad \text { when } \quad-\sqrt{3}<X<\sqrt{3}
$$

and $f(x)=0$ elsewhere, compute $\mathcal{P}\left(|X| \geq \frac{3}{2}\right)$ and $\mathcal{P}(|X| \geq 2)$. Compare these probabilities with the upper bounds given by the Chebyshev's inequality.
We have $\mu=0$ (by symmetry); and $\sigma=\ldots=1 ; \quad \sigma^{2}=L^{2} / 12=4 \times 3 / 12=1$
We have $\mathcal{P}\left(|X| \geq \frac{3}{2}\right) \leq \frac{1}{(3 / 2)^{2}}=\frac{4}{9} \quad$ (Chebyshev) and $\quad 1-\sqrt{3} / 2 \approx 0.134$ (computations).
The second question: $\mathcal{P}(|X| \geq 2) \leq \frac{1}{(1 / 2)^{2}}=\frac{1}{4} \quad$ (Chebyshev) but the real \mathcal{P} is zero! (2 is outside the interval!)
9. Use the Chebyshev's inequality to find the lower bound on $\mathcal{P}(-4<X<20)$, where X is a RV with mean $\mu=8$ and variance $\sigma^{2}=9$.
In accordance with the Chebyshev's inequality: $\mathcal{P}(X \geq 20$ or $X \leq-4) \leq 1 / 4^{2}=$ $1 / 16$; hence $\mathcal{P}(-4<X<20) \geq 15 / 16$.
10. If X follows a discrete uniform distribution i.e. $\mathcal{P}(X=i) \quad i=1,2, \ldots, N-1, N=\frac{1}{N}$ find $E(X)$ and $\sigma^{2}(X)$.
$\mu=(N+1) / 2$ and $\sigma^{2}=\left(N^{2}-1\right) / 12$
Hint: use the formula $\sum_{X=1}^{N} X^{2}=\frac{N(2 N+1)(N+1)}{6}$ (by the way, would you know how to justify this formula?).

