With the help of the table of areas under the normal curve (i.e. - values of the cumulative distribution) solve the following simple problems ($\Phi(x)$ denotes the area under the standard normal curve):

- Given a standard normal distribution, find the area under the curve that lies (a) to the right of $u=1.84$ (0.0329) , and (b) between $z=-1.97$ and $z=0.86$. ($0.8051-0.0244=0.7807)$
- Given a standard normal distribution, find the value of u such that (a) $P(Z>z)=0.3015$. (0.52) and (b) $P(k<Z<-0.18)=0.4197$;
we have

$$
\Phi(-0.18)-\Phi(k)=0.4197 ; \quad \Phi(k)=\Phi(-0.18)-0.4197=0.4286-0.4197=0.0089
$$

from the table, we have $k=-2.37$

- Given a normal distribution with $\mu=50$ and $\sigma=10$, find the probability that X assumes a value between 45 and 62.
we standardise:

$$
z_{1}=\frac{45-50}{10}=-0.5 ; \quad z_{2}=\frac{62-50}{10}=1.2
$$

$$
P(45<X<62)=P(-0.5<Z<1.2)=P(Z<1.2)-P(Z<-0.5)=\Phi(1.2)-\Phi(-0.5)=0.8849-0.3085=0.5764
$$

- Given a normal distribution with $\mu=300$ and $\sigma=50$, find the probability that X assumes a value greater than 362. we standardise:

$$
z=\frac{362-300}{50}=1.24 ; \quad P(X>362)=P(Z>1.24)=1-P(Z<1.24)=1-0.8925=0.1075
$$

- Given a normal distribution with $\mu=40$ and $\sigma=6$, find the value of x that has (a) 45% of the area to the left, and (b) 14% of the area to the right.
From the tables we find $P(Z<-0.13)=0.45$, so $z=-0.13$. hence $x=(6)(-0.13)+40=39.22$ (we use the standardisation formula ,,backwards"); for (b) - in a similar fashion $-x=46.48$
- A certain type of storage battery lasts on the average 3.0 years; with a standard deviation of 0.5 year. Assuming that the battery lives are normally distributed, find the probability that a given battery will last less than 2.3 years.

$$
Z=\frac{3-2.3}{0.5}=-1.4 ; \quad P(X<2.3)=P(Z<-1.4)=0.808
$$

- An electrical firm manufactures light bulbs that have a length of life that is normally distributed with mean equal to 800 hours and a standard deviation of 40 hours. Find the probability that a bulb burns between 778 and 834 hours.

$$
\begin{gathered}
z_{1}=\frac{778-800}{40}=-0.55 ; \quad z_{2}=\frac{834-800}{40}=0.85 \\
P(778<X<834)=P(-0.55<Z<0.85)=P(Z<0.85)-P(Z<-0.55)=0.5111
\end{gathered}
$$

- In an industrial process the diameter of a ball bearing must meet the specification: $3.0 \pm 0.01 \mathrm{~cm}$. It is known that in the process the diameter of the ball bearing has a normal distribution with mean 3.0 and standard deviation $\sigma=0.005$. On the average; how many ball bearings will be scrapped?
Answer: Convert 2.99 and 3.01 into z_{1} and z_{2}; on the average, 4.56% of manufactured ball bearings.
- On an examination the average grade was 74 and the standard deviation was 7 . If 12% of the class are given A's; and the grades follow a normal distribution what is the lowest possible A and the highest possible B?
Answer: we require a z-value that leaves 0.12 of the area to the right and hence an area of 0.88 to the left. From the tables $z=1.175$ So $x=(7)(1.175)+74=82.225$. Therefore the lowest A is 83 and the highest B is 82 .
- For the problem above find the sixth decile, i.e. the $q_{0.6}$ quantile. (This is the x-value that leaves 60% of the area under the normal curve to the left.)
from the tables $z_{0.6}=0.25$ so $x=(7)(0.25)+74=75.75$. It means that 60% of the grades are 75 or less.

Exponential probability density function

- Suppose the length of time an electric bulb lasts, X, is a random variable with cumulative function

$$
F(x)=\mathcal{P}(X \leq x)=\left\{\begin{array}{cc}
0 & x<0 \\
1-e^{-x / 500} & x \geq 0
\end{array}\right.
$$

Find the probability that the bulb lasts: (a) between 100 and 200 hours $\mathcal{P}(100 \leq X \leq 200)=F(200)-$ $F(100)=0.1484$
(b) beyond 300 hours. $\mathcal{P}(X \geq 300)=1-F(300)=0.5488$
(c)Find the expected value of the bulb life-time - 500 hours

- Let X be the random variable representing the length of a telephone conversation. Let $f(x)=\lambda e^{-\lambda x}, \quad 0 \leq$ $x<\infty$. Find the c.d.f $F(x)$ and find $\mathcal{P}(5<X<10)$.

$$
F(X)=\int_{0}^{x} f(t) d t=1-e^{-\lambda x} ; \quad \mathcal{P}=e^{-5 \lambda}-e^{-10 \lambda}
$$

