PROBABILITIES - REVIEW PROBLEMS

1. After finishing his book, the author goes over the text and finds m_{1} mistakes. After that, he proofreads it another time and finds m_{2} mistakes $\left(m_{2}<m_{1}\right)$. How many mistakes can he expect to still be in the book?
Hint: we assume the probability p of spotting a mistake to be the same during 1 st and 2 nd read.
2. Find the number of committees that can be formed from 4 chemists and 3 physicists, if each committee consists of 2 chemists and 1 physicist.
3. If an experiment consists of tossing a die and drawing a letter at random from the English alphabet (26 characters), how many points are in the sample space?
4. A multiple-choice test consists of 5 questions with 4 possible answers of which only one is correct. (a) In how many different ways can a student check off the test? (b) In how many different ways can a student check off the test and get all the answers wrong?
5. A poker card consists of 5 cards. Find the probability of holding 2 kings and 1 queen.
6. The probabilities that a person selecting a new car will choose the colour green, white, red or blue are $0.09,0.15$, 0.21 and 0.23 , respectively. What the probability that a given person will purchase a car that comes in blue or green?
7. A box contains 500 envelopes of which 75 contain $\$ 100$ in cash, $150-\$ 25$, and 275 contain $\$ 10$. Find the probability that an envelope selected at random contains less than $\$ 100$.
8. A pair of dice is tossed. Find the probability of getting (a) a total of 8 ; (b) at most total of 5 .
9. Two cards are drawn in succession from a 52 -card deck without replacement. What is the probability that both are greater than 2 and less than 8 ?
10. In a poker hand find the probability of holding (a) 3 aces; (b) 4 aces and 1 club.
11. Five dice are tossed simultaneously. What is the probability of having 4 of a kind (four 6 's, four 5 's, etc.)
12. Probability that a regularly scheduled flight departs on time is $P(D)=0.83$; the probability that it arrives on time is $P(A)=0.82$. The probability that it departs and arrives on time $-P(A D)=0.78$.
(a) are the events: "departure on timeąnd ąrival on time"dependent or independent? Find the probability that a plane will
(b) arrive on time given that it departed on time
(c) departed on time, given that it arrived on time.
13. One bag contains 4 white balls and 3 black balls, and a second bag - 3 white and 5 black ones. One ball is drawn from the 1st bag and placed unseen in the second. What is the probability that a ball now drawn from the second bag will be black? 38/63
14. Three cards are drawn in succession from an ordinary (52-card) deck. Find the prob- ability of the complex event": the first card is a red ace AND the second is a 10 or Jack AND the third is less than 7 and greater than 3. $16 / 5525$
15. A pair of dice is thrown. It is known that one die (we don't know which) shows a 4 . What is the probability that (a) the other die shows a $5[2 / 11]$ (b) the total of both is greater than $7[5 / 11]$.
Hint: think carefully - how big is the event space?
16. 40% of men have curly hair. The probability that a child will have curly hair if his father has smooth (non-curly) hair is 0.3 , and the probability a father had smooth hair if his child was born with curly hair is 0.6 . What is the probability that a child of a curly-hair father will also have curly hair.
Hint: Bayes scheme. $P=0.3$.
17. In a certain region it is known from the past experience that the probability of selecting an adult over 40 years of age with cancer is 0.02 . If the probability of a doctor correctly diagnosing a person with cancer as having the disease is 0.78 and the probability of incorrectly diagnosing a person without cancer as having the disease is 0.06 , what is the probability that a person is diagnosed as having cancer?

What is the probability that a person diagnosed as having cancer actually has the disease?
Hint: Bayes scheme.
18. Police plan to enforce speed limits by using radar traps at 4 different locations within the city limits. The 4 traps L_{1}, L_{2}, L_{3}, and L_{4} are operated $40 \%, 30 \%, 20 \%$, and 30% of the time, and if a person who is speeding on his way to work has probabilities of $0.2,0.1,0.5$ and 0.2 , respectively, of passing through these locations, what is the probability that he will receive a speeding ticket?
What is the probability that a person who has received a speeding ticket passed through the trap located at L2 (speeding all the time on his way)?

