PROBABILITIES, RV BASICS

1. [4 points] After finishing his book, the author goes over the text and finds m_{1} mistakes. After that, he proofreads it another time and finds m_{2} mistakes $\left(m_{2}<m_{1}\right)$. How many mistakes can he expect to still be in the book?
Hint: we assume the probability p of spotting a mistake to be the same during 1 st and 2 nd read.
\# of mistakes original - M
\# of mistakes after the 1 st read $M-m_{1}$; after second: $L=M-m_{1}-m_{2}$.
probability of spotting a mistake: $p=\frac{m_{1}}{M}$; hence $m_{2}=p\left(M-m_{1}\right)=\ldots=m_{1}\left(1-\frac{m_{1}}{M}\right)$.
Thus $M=\frac{m_{1}^{2}}{m_{1}-m_{2}} \quad$ and $\quad L=M-m_{1}-m_{2}=\ldots=\frac{m_{2}^{2}}{m_{1}-m_{2}}$;
$p=m_{1} / M=1-\frac{m_{2}}{m_{1}}$.
Try to illustrate the problem with $m_{1}=30$ and $m_{2}=12$.
2. [4 points] In a poker hand find the probability of holding (a) 3 aces; (b) 4 aces and 1 club.
(a)

$$
\binom{4}{3} \times\binom{ 48}{2} /\binom{52}{5}
$$

(b)

$$
12 /\binom{52}{5}
$$

3. [3 points] Probability that a regularly scheduled flight departs on time is $\mathcal{P}(D)=0.83$; the probability that it arrives on time is $\mathcal{P}(A)=0.82$. The probability that it departs and arrives on time is $\mathcal{P}(A D)=0.78$.
(a) are the events: 'departure on time', and, 'arrival on time' dependent or independent? Find the probability that a plane will
(b) arrive on time given that it departed on time
(c) departed on time, given that it arrived on time.
(a) dependent: $P(A D) \neq P(A) P(D)$
(b) \& (c) $P(A D)=P(A \mid D) P(D)=P(D \mid A) P(A)$
4. [4 points] Consider a deck of six cards marked $2,4,6,8,10$ and 12 . Two of these cards are picked at random without replacement; let $W=$ the sum of numbers picked.
(a) Compute the probability function of W (fill-in the probability table):

w_{i}	6	8	10	12	14	16	18	20	22
p_{i}	$1 / 15$	$1 / 15$	$2 / 15$	$2 / 15$	$3 / 15$	$2 / 15$	$2 / 15$	$1 / 15$	$1 / 15$

Hint: construct an auxiliary table with numbers $2,4,6,8,10$ and 12 as the headers of the columns and rows. Calculate the sums at the intersections.
(b) fill in the cumulative distribution table: $F\left(w_{i}\right)=\mathcal{P}\left(W \leq w_{i}\right)$:

w_{i}	6	8	10	12	14	16	18	20	22
$F\left(w_{i}\right)$	$1 / 15$	$2 / 15$	$4 / 15$	$6 / 15$	$9 / 15$	$11 / 15$	$13 / 15$	$14 / 15$	1

and sketch (roughly) the 2 graphs. What is the probability of having the sum less than 18 and greater than or equal to 14 ? $\mathcal{P}(14 \leq X<18)=F(16)-F(12)=1 / 3$
5. [4 points] Compute the expected value and the variance of the random variable W from the problem 4.
$E(W)=\sum_{i} p_{i} w_{i}=7 ;$ (also from the symmetry)
$V A R(W)=\sum_{i} p_{i}\left(w_{i}-14\right)^{2}=2 \times\left[(6-14)^{2} \cdot \frac{1}{15}+(8-14)^{2} \cdot \frac{1}{15}+(10-14)^{2} \cdot \frac{2}{15}+(12-14)^{2} \cdot \frac{2}{15}\right]=\ldots=56 / 3$.
If you fail to construct the probability table calculate the expected value and the variance of the random variable V from the table below [3 points]

$$
\left.\begin{array}{||c|c|c|c|c||}
v_{i} & -1 & 0 & 1 & 3 \\
\hline p_{i} & 0.2 & 0.3 & 0.3 & 0.2
\end{array}\right] . \begin{array}{r}
E(V)=\sum_{i} p_{i} w_{i}=0.7 ; \quad \operatorname{VAR}(W)=\sum_{i} p_{i}\left(v_{i}-0.7\right)^{2}=1.81
\end{array}
$$

6. [4 points]The probability density function of the random variable X is given by:

$$
f(x)=\left\{\begin{array}{ccc}
0 & \text { for } & -\infty<x<0 \\
\cos x & \text { for } & 0 \leq x \leq \frac{1}{2} \pi \\
0 & \text { for } & \frac{1}{2} \pi<x<\infty
\end{array}\right.
$$

Find the cumulative distribution $F(x)$ and calculate $\mathcal{P}(1 / 6 \pi<x<1 / 3 \pi)$.
Sketch the graphs of probability density function and cumulative distribution function and read out the calculated \mathcal{P} from the graphs.

$$
\begin{gathered}
F(x)=\int_{-\infty}^{x} f(s) d s=\int_{-\infty}^{x} \cos (s) d s=\sin x \\
\mathcal{P}(1 / 6 \pi<x<1 / 3 \pi)=F(1 / 3 \pi)-F(1 / 6 \pi)=\sin (1 / 3 \pi)-\sin (1 / 3 \pi)=\sqrt{3} / 2-1 / 2 \approx 0.366 .
\end{gathered}
$$

7. [3 points] A multiple-choice quiz has 10 questions each with four alternatives. A passing score is 5 or more correct. If a student attempts to guess the answer to each question what is the probability that she/he passes?
the probability of having five correct answers is

$$
W_{5}^{10}=\binom{10}{5}\left(\frac{1}{4}\right)^{5}\left(\frac{3}{4}\right)^{5} \approx 0.0162
$$

but the overall probability will be a sum

$$
S=W_{5}^{10}+W_{6}^{10}+W_{7}^{10}+W_{8}^{10}+W_{9}^{10}+W_{10}^{10}===1-\mathcal{P}(X \leq 4) \ldots \text { tables }=1-0.922 \approx 0.078
$$

8. [4 points]The average number of radioactive particles passing a counter during 1 millisecond in a laboratory experiment is 6 .
What is the probability that:
a) exactly 5 particles enter the counter in a given millisecond?

$$
\mathcal{P}(X=5)=\mathcal{P}(X \leq 5)-\mathcal{P}(X \leq 4)=\ldots \text { tables } \ldots 0.4457-0.2851=0.1606
$$

b) at least 5 particles enter the counter in a given millisecond?
it means that the number must be greater than 4 .
from tables: $\mathcal{P}(X \leq 4)=0.2851$; hence $\mathcal{P}=1-0.2851=0.7149$
c) $\mathcal{P}(X \leq 5)=F(5)=0.446$
9. [4 points] An electrical firm manufactures (traditional) light bulbs that have a length of life that is normally distributed with mean equal to 1000 hours and a standard deviation of 50 hours. Find the probability that a bulb burns between 985 and 1030 hours.

$$
\begin{gathered}
z_{1}=\frac{985-1000}{50}=-0.3 ; \quad z_{2}=\frac{1030-1000}{50}=0.6 \\
\mathcal{P}(985<X<1030)=\mathcal{P}(-0.3<Z<0.6)=\mathcal{P}(Z<0.6)-\mathcal{P}(Z<-0.3)=\Phi(0.6)-\Phi(-0.3)=0.72575-0.38209=0.34366
\end{gathered}
$$

