Topics for the exam in statistics: fall 2014/winter 2015 semester

Chance event, Probability

- definitions of probability by Laplace and Kolmogorov.
- probability of the union (sum) of events:
$\mathcal{P}(A \cup B)=\mathcal{P}(A)+\mathcal{P}(B)-\mathcal{P}(A B)$
- conditional probability; definition of independent events

$$
\begin{gathered}
\mathcal{P}(A \mid B)=\mathcal{P}(A) \quad \mathcal{P}(B \mid A)=\mathcal{P}(B) \\
\mathcal{P}(A B)=\mathcal{P}(B) \mathcal{P}(A \mid B)=\mathcal{P}(B) \mathcal{P}(A)
\end{gathered}
$$

Random Variable (RV)

- Expected value of a RV: $E(X)$ - definitions for the case of a discrete and continuous RV.
- moments and basic parameters: variance (as the expected value of the square of deviations from ??); skewness (the measure of what property?)
- other parameters: quantile (sketch a graph showing the meaning of the - say -95%-quantile: $\left.q_{0.95}\right)$; median, quartile.
- the probability function and the cummulative distribution function (the discrete RV); the probability density function $f(x)$ and the cummulative distribution function $F(x)$ (for the continuous RV). What are the meanings of these two functions in terms of probability? What are the relations linking $F(x)$ and $f(x)$ for the dicrete- and continuous-RV

Basic distributions of discrete and continuous RV,
their expected values $E(X)$, variances $\sigma^{2}(X)$:

- Poisson distribution $\left(E(X)=\sigma^{2}(X)=\lambda\right.$. The basic formula for $\mathcal{P} ; \lambda$). For ambitious (and well-trained in algebra) students: show by definition that $E(X)=\sum_{k=0}^{\infty} k \cdot \mathcal{P}(X=k ; \lambda)=\lambda$ (you may find this derivation at my page)
- Bernoulli (binomial) distribution (definition, expected value, variance)
- Uniform distribution (definition, expected value, variance)
- Normal distribution (definition, expected value, variance)

Normal distribution

- the standardization procedure: if X follows a normal distribution with $E(X)=\mu$ and σ the standardized variable:
$Z=\frac{X-\mu}{\sigma} \rightarrow N(0,1)$ - the standardized normal distribution.
- a rough graph of $N(0,1)$. What are the portions of the area under the graph for intervals $2-, 4-$, and $6-\sigma$ wide?
- The Chebyshev theorem
- the Central Limit Theorem - what happens if we add together several (n) RVs that all follow the same type of distribution? What is the expected value of $\bar{X}=\frac{1}{n} \sum_{i=1}^{n} X_{i}$? And its variance $-\sigma^{2}(\bar{X})$?

Estimators

- what is 'statistical sample'?
- what is the commonly used estimator for $E(X)$?
- the same - for variance. Define S^{2} and $S^{* 2}$ estimators. Why that (small) difference?
- if we have several values of $\mathrm{RV} x_{i}$ and their variances σ_{i} what estimator should be used for $E(X)$. Consult my page (at the very end of the presentation)

Confidence Intervals

- describe in detail procedures for constructing a - say - 95% confidence interval for the expected value. Assume: (a) a statistical sample of a rather large size ($\geqslant 30$); (b) a statistical sample with with $n \leqslant 10$. What are the formulae for the left- and right-hand boundary of those intervals (in both cases)?

Hypotheses testing

- what is 'rejection region' for the $H 0$ hypothesis versus a given $H 1$ one? Example: suppose you are to test the hypothesis $H 0: \mu=5$ and your statistical sample has the $\bar{X}=6$. σ is known and is equal to 3 . Where will you put the rejection region if significance level $\alpha=0,05$?
- describe the chi-squared test for testing a hypothesis about our RV conforming with the uniform distribution: we assume that in each of the unit intervals: $[0,1),[1,2), \ldots,[9,10)$ we should have the same number of x-values $\left(n_{i}\right)_{\text {theory }}$ and our measurements give 10 values x-values $\left(n_{i}\right)_{\text {experiment }}$. How do we proceed? (revise the Mendel example) my page

