Probabilities: a very short course

CHANCE EVENT

- the outcome of an experiment which may have various realisations Ω - sample space (event space): e_{i} or $A_{i}-$ an event.
Ω - sample space is the set of all possible results (outcomes) of a given statistical experiment, or sampling.
example - tossing a die

$$
\left.\begin{array}{c}
\left(e_{1}\right) \bigcup\left(e_{2}\right) \bigcup\left(e_{3}\right) \bigcup\left(e_{4}\right) \bigcup\left(e_{5}\right) \bigcup\left(e_{6}\right) \\
\left(e_{1} \bigcup e_{2}\right),\left(e_{1} \bigcup e_{3}\right), \ldots,\left(e_{5} \bigcup e_{6}\right) \\
\left(e_{1} \bigcup e_{2} \bigcup e_{3}\right),\left(e_{1} \bigcup e_{2} \bigcup e_{4}\right), \ldots,\left(e_{4} \bigcup e_{5} \bigcup e_{6}\right) \\
\left(e_{1} \bigcup e_{2} \bigcup e_{3} \bigcup e_{4}\right) \equiv\left(\bar{e}_{5} \bigcap \bar{e}_{6}\right), \ldots \\
\left(e_{1} \bigcup e_{2} \bigcup e_{3} \bigcup e_{4} \bigcup e_{5}\right) \equiv\left(\bar{e}_{6}\right), \ldots \\
+ \text { an event which must happen; e.g. }\left(e_{1} \bigcup e_{2} \bigcup e_{3} \bigcup e_{4} \bigcup e_{5} \cup e_{6}\right) \\
+ \text { an event which cannot happen: }\left(\bar{e}_{1} \bigcap \bar{e}_{2} \bigcap \bar{e}_{3} \bigcap \bar{e}_{4} \bigcap \bar{e}_{5} \bigcap \bar{e}_{6}\right)
\end{array}\right\}
$$

where: \bigcup - means ,,or" (the sum or union of events);
and \bigcap - means ,,and" (the product or intersection ofeevents)

definition of probability (of an event A)

(1) Laplace (beg. of 19th C.):

$$
\mathcal{P}(A)=\frac{n(A)}{N(\text { total })} .
$$

(2) von Mises (end of 19th C.):

$$
\mathcal{P}(A)=\lim _{n \rightarrow \infty} \frac{k_{n}(A)}{n} \quad \text { where } \quad k_{n}(A)
$$

is the number of A events in n experiments (or frequency).
(3) Kolmogorov (beg. of 20th C.) - (3 axioms):

- $\mathcal{P}($ of an event $) \in[0,1]$
- $\mathcal{P}(\Omega)=1$. - AN event from the event space must occur
- for mutually exclusive events $A_{i} ; i=1, \ldots, n$

$$
\mathcal{P}\left(A_{1} \bigcup A_{2} \ldots \bigcup A_{n}\right)=\sum_{i=1}^{n} \mathcal{P}\left(A_{i}\right) .
$$

VENN diagrams

THE COMPLEMENT OF AN EVENT A :

$$
\bar{A}=\Omega-A
$$

THE UNION OF (3) EVENTS :

$$
\begin{equation*}
A=A_{1} \bigcup A_{2} \bigcup A_{3} \ldots=A_{1}+A_{2}+A_{3} \ldots=\sum_{i} A_{i} \tag{b}
\end{equation*}
$$

THE INTERSECTION OF (3) EVENTS :

$$
A=A_{1} \bigcap A_{2} \bigcap A_{3} \ldots=A_{1} A_{2} A_{3} \ldots=\prod_{i} A_{i} \quad(c)
$$

(a)

(b)

(c)

VENN diagrams, cntd.

THE DIFFERENCE OF (2) EVENTS

$$
A_{1}-A_{2} \quad(d)
$$

CONDITIONAL PROBABILITY

$\mathcal{P}(A \mid B)$ - PROBABILITY OF (an event) A given that B occurs Note: $A B \equiv A \bigcap B$

$$
\begin{equation*}
\mathcal{P}(A B)=\mathcal{P}(B) \mathcal{P}(A \mid B)=\mathcal{P}(A) \mathcal{P}(B \mid A) \tag{1}
\end{equation*}
$$

(2)

$$
\mathcal{P}(A \mid B)=\frac{\mathcal{P}(A B)}{\mathcal{P}(B)} \quad \mathcal{P}(B \mid A)=\frac{\mathcal{P}(A B)}{\mathcal{P}(A)}
$$

$\mathcal{P}(A \mid B)=1$

$0<\mathcal{P}(A \mid B)<1$

$\mathcal{P}(A \mid B)=0$

INDEPENDENT EVENTS

$A, B:$

$$
\text { (3) } \quad \mathcal{P}(A \mid B)=\mathcal{P}(A) \quad \mathcal{P}(B \mid A)=\mathcal{P}(B)
$$

$$
\mathcal{P}(A B) \stackrel{(1)}{=} \mathcal{P}(B) \mathcal{P}(A \mid B) \stackrel{(3)}{=} \mathcal{P}(B) \mathcal{P}(A)
$$

The above formula may be regarded as the fundamental definition of independent events
P(union A $\cup \mathrm{B}) \stackrel{?}{=}$

$$
\begin{aligned}
\mathcal{P}(A \bigcup B) & =\mathcal{P}(A)+\mathcal{P}(B)-\mathcal{P}(A B) \\
\cdots & \ldots \\
\mathcal{P}\left(\sum_{k=1}^{n} A_{k}\right) & =\sum_{k=1}^{n} \mathcal{P}\left(A_{k}\right)-\sum_{k_{1}<k_{2}} \mathcal{P}\left(A_{k_{1}} A_{k_{2}}\right) \\
& +\sum_{k_{1}<k_{2}<k_{3}} \mathcal{P}\left(A_{k_{1}} A_{k_{2}} A_{k_{3}}\right)+\ldots+(-1)^{n} \mathcal{P}\left(A_{1} A_{2} \ldots A_{n}\right)
\end{aligned}
$$

Let the events $A_{1}, A_{2}, \ldots, A_{n}$ be a partition of Ω (sample space) and let B denote an event. We have

$$
\mathcal{P}(B)=\mathcal{P}\left(A_{1}\right) \mathcal{P}\left(B \mid A_{1}\right)+\mathcal{P}\left(A_{2}\right) \mathcal{P}\left(B \mid A_{2}\right)+\ldots=\sum_{k=1}^{n} \mathcal{P}\left(A_{k}\right) \mathcal{P}\left(B \mid A_{k}\right)
$$

Example: Suppose: 60% of students pass successfully the written exam; 95% (of those who passed the written - to be allowed to enter the oral exam a student must obtain a positive grade from the written part) oral one. What is the probability of a fully successful exam?
Let: E - fully successful exam; \bar{E} - fail; similarly W - successful written exam; \bar{W} - fail (written); O - successful oral exam; \bar{O} - fail (oral); $\mathcal{P}(\bar{E})=\mathcal{P}(\bar{E} \mid W) \cdot \mathcal{P}(W)+\mathcal{P}(\bar{E} \mid \bar{W}) \cdot \mathcal{P}(\bar{W}) \quad \mathcal{P}(E)=1-\mathcal{P}(\bar{E})$
$\mathcal{P}(\bar{E})=0.05 \cdot 0.6+1.0 \cdot 0.4=0.43 \quad \mathcal{P}(E)=0.57=\mathcal{P}(W) \cdot \mathcal{P}(O)$.

CONDITIONAL PROBABILITY AND BAYES' THEOREM:

LET US CONSIDER n EVENTS A_{i} THAT:
1° are mutually exclusive, i.e. $\mathcal{P}\left(A_{l} A_{m}\right)=0$ for $l \neq m ; l, m=1, \ldots n$ 2° constitute a complete partition of sample space Ω, i.e. $\Omega=\sum_{k=1}^{n} A_{k}$

$$
B=A_{1} B+A_{2} B+\ldots+A_{n} B
$$

$$
\mathcal{P}(B)=\mathcal{P}\left(A_{1}\right) \mathcal{P}\left(B \mid A_{1}\right)+\mathcal{P}\left(A_{2}\right) \mathcal{P}\left(B \mid A_{2}\right)+\ldots=\sum_{k=1}^{n} \mathcal{P}\left(A_{k}\right) \mathcal{P}\left(B \mid A_{k}\right)
$$

BAYES' RULE, CNTD.

$$
\mathcal{P}\left(A_{i} B\right)=\mathcal{P}(B) \mathcal{P}\left(A_{i} \mid B\right)=\mathcal{P}\left(A_{i}\right) \mathcal{P}\left(B \mid A_{i}\right)
$$

(3) $\quad \mathcal{P}\left(A_{i} \mid B\right)=\frac{\mathcal{P}\left(A_{i}\right) \mathcal{P}\left(B \mid A_{i}\right)}{\mathcal{P}(B)}=\frac{\mathcal{P}\left(A_{i}\right) \mathcal{P}\left(B \mid A_{i}\right)}{\sum_{k=1}^{n} \mathcal{P}\left(A_{k}\right) \mathcal{P}\left(B \mid A_{k}\right)}$
$\mathcal{P}\left(A_{i} \mid B\right)$ - is called the a posteriori probability

BAYES' RULE, A PRACTICAL(!) EXAMPLE.

The probability of a disease is one in thousand persons. A routine screening test is positive in 100% of "true" cases and gives an erroneous positive result in 5% of healthy persons. A randomly chosen person is tested and the result is positive What is the probability that the person is really sick?
Denote: S - sick; \bar{S} - healthy; we have

$$
\mathcal{P}(+\mid S)=1.0 \quad \mathcal{P}(+\mid \bar{S})=0.05 \quad \mathcal{P}(-\mid S)=0.0 \quad \mathcal{P}(-\mid \bar{S})=0.95
$$

also:
$\mathcal{P}(+)=\mathcal{P}(S) \cdot \mathcal{P}(+\mid S)+\mathcal{P}(\bar{S}) \cdot P(+\mid \bar{S})=0.001 \cdot 1+0.999 \cdot 0.05 \approx 0.051$

$$
\mathcal{P}(+S)=\mathcal{P}(S) \cdot \mathcal{P}(+\mid S)=\mathcal{P}(+) \cdot \mathcal{P}(S \mid+)
$$

hence

$$
\mathcal{P}(S \mid+)=\frac{\mathcal{P}(S) \cdot \mathcal{P}(+\mid S)}{\mathcal{P}(+)} \approx 0.02
$$

Question: is it a good screening test?

Adendum - some algebraic beasts

Permutation of n objects taken k at time:

$$
P_{n, k}=n(n-1) \ldots(n-k+1)=\frac{n!}{(n-k)!} ; \quad P_{n, n}=n!
$$

Example: (Feller's problem) Suppose we have 23 persons in the soccer field. What is the probability $\mathcal{P}(A)$ that at least two persons have the same birthday?

$$
\Omega=365^{23} ; \quad \mathcal{P}(\bar{A})=\frac{P_{365,23}}{365^{23}} \approx 0,493 \quad \mathcal{P}(A)=0.507
$$

Combination is the number of distinct subsets of size k taken from n distinct objects (the order within the subset has no importance):
$C_{n, k}=\frac{P_{n, k}}{k!} \equiv\binom{n}{k}=\frac{n!}{(n-k)!k!}$
Example: what is the chance of having 'six' out of 49 numbers in the Lotto lottery? - the number of various outcomes is

$$
C_{49,6}=\frac{49!}{(43!)!6!} \approx 14 \text { million }
$$

