RANDOM VARIABLE

RANDOM VARIABLE

< 17 ►

- (三) (二)

3 N

RANDOM VARIABLE — A 'MAPPING' OF THE SET OF (ELEMENTARY) EVENTS E onto the set of real numbers \mathcal{R} . For instance:

- height of a person met in the street;
- number of people in Cracow down with flu each day;
- number of meteorites falling each year per 1 km²;
- number of minutes you wait every day for the street-car;
- number of accidents per months at a given street-intersection;
- strength of a climbing-rope;
- number of deaths in Cracow in (each) November
- a result of every measurement.

RANDOM VARIABLE

RANDOM VARIABLE

< ≣⇒

< ∃ >

< 17 ▶

æ

and its (CUMULATIVE) DISTRIBUTION FUNCTION RANDOM VARIABLE — A "MAPPING" OF THE SET OF (ELEMENTARY) EVENTS E onto the set of real numbers \mathcal{R}

and its (CUMULATIVE) DISTRIBUTION FUNCTION RANDOM VARIABLE — A "MAPPING" OF THE SET OF (ELEMENTARY) EVENTS E onto the set of real numbers \mathcal{R}

 $X \equiv$ random variable; x — its value (realisation)

and its (CUMULATIVE) DISTRIBUTION FUNCTION RANDOM VARIABLE — A "MAPPING" OF THE SET OF (ELEMENTARY) EVENTS E onto the set of real numbers \mathcal{R} $X \equiv$ RANDOM VARIABLE; x — ITS VALUE (REALISATION)

we introduce cumulative distribution function: $F_X(x)$ (or shortly: F(x)) as

$$F_X(x) \equiv F(x) = \mathcal{P}(X \le x)$$

Some textbooks use a slightly different definition

$$F_X(x) \equiv F(x) = \mathcal{P}(X < x)$$

It has no any influence in the case of continuous RV; but for a discrete RV it makes quite a difference

 $0 \leq F(x) \leq 1 \text{ FOR EVERY } x;$

э

- $0 \le F(x) \le 1$ FOR EVERY x;
- $Iim_{x \to -\infty} \equiv F(-\infty) = 0 \quad Iim_{x \to \infty} \equiv F(\infty) = 1;$

э

- $0 \le F(x) \le 1$ FOR EVERY x;
- $Iim_{x \to -\infty} \equiv F(-\infty) = 0 \quad Iim_{x \to \infty} \equiv F(\infty) = 1;$
- **③** F(x) IS A NON-DECREASING FUNCTION;

- $0 \le F(x) \le 1$ FOR EVERY x;
- $Iim_{x \to -\infty} \equiv F(-\infty) = 0 \quad Iim_{x \to \infty} \equiv F(\infty) = 1;$
- **3** F(x) is a non-decreasing function;
- F(x) IS RIGHT-SIDED (AT LEAST) CONTINUOUS: F(x+0) = F(x);

- $0 \le F(x) \le 1$ FOR EVERY x;
- $Iim_{x \to -\infty} \equiv F(-\infty) = 0 \quad Iim_{x \to \infty} \equiv F(\infty) = 1;$
- **③** F(x) is a non-decreasing function;
- F(x) IS RIGHT-SIDED (AT LEAST) CONTINUOUS: F(x+0) = F(x);

•
$$\mathcal{P}(a < X \le b) = F(b) - F(a);$$

- $0 \leq F(x) \leq 1 \text{ FOR EVERY } x;$
- $Iim_{x \to -\infty} \equiv F(-\infty) = 0 \quad Iim_{x \to \infty} \equiv F(\infty) = 1;$
- **3** F(x) is a non-decreasing function;
- F(x) IS RIGHT-SIDED (AT LEAST) CONTINUOUS: F(x+0) = F(x);

•
$$\mathcal{P}(X = x_0) = F(x_0) - F(x_0 - 0)$$

RANDOM VARIABLE

E १९९०

- 4 聞 と 4 速 と 4 速 と

... and the probability distribution function:

< ∃⇒

3

... and the probability distribution function:

there exists a finite (or at least enumerable) set of the values $\{x_1, \ldots, x_k, \ldots\}$ of the random variable X which occur with probabilities $\{p_1, \ldots, p_k, \ldots\}$:

... and the probability distribution function:

there exists a finite (or at least enumerable) set of the values $\{x_1, \ldots, x_k, \ldots\}$ of the random variable X which occur with probabilities $\{p_1, \ldots, p_k, \ldots\}$:

$$\mathcal{P}(X = x_i) = p_i > 0; \quad \sum_{i=1} p_i = 1$$

The set of all $p(x_i)$ values is called *probability distribution* or *probability function*

... and the probability distribution function:

there exists a finite (or at least enumerable) set of the values $\{x_1, \ldots, x_k, \ldots\}$ of the random variable X which occur with probabilities $\{p_1, \ldots, p_k, \ldots\}$:

$$\mathcal{P}(X = x_i) = p_i > 0; \quad \sum_{i=1} p_i = 1$$

The set of all $p(\boldsymbol{x}_i)$ values is called *probability distribution* or *probability function*

Our cumulative (probability) distribution is given as:

$$F(x) = \mathcal{P}(X \le x) = \sum_{-\infty < x_i \le x} p_i$$

cumulative distribution function (left) and probability function (right)

RANDOM VARIABLE

RANDOM VARIABLE OF THE CONTINUOUS TYPE

There exists : f(x) for $-\infty < x < \infty; \quad f(x) \geq 0$, which is related to F(x) as

$$F(x) = \int_{-\infty}^{x} f(s) \, ds$$

◆ロト ◆昼 ▶ ◆臣 ▶ ◆臣 ▶ ○臣 ○ のへで

RANDOM VARIABLE OF THE CONTINUOUS TYPE

There exists : f(x) for $-\infty < x < \infty; \quad f(x) \geq 0$, which is related to F(x) as

$$F(x) = \int_{-\infty}^{x} f(s) \, ds$$

The two functions have the following properties:

•
$$\frac{dF}{dx} = f(x) \qquad F(x) = \int_{-\infty}^{x} f(s) \, ds;$$

•
$$\int_{-\infty}^{\infty} f(x) \, dx = 1;$$

•
$$\sum_{c \in R} \mathcal{P}(X = c) = 0;$$

•
$$\mathcal{P}(a \le X < b) = \mathcal{P}(a < X \le b) = \mathcal{P}(a < X < b) = \mathcal{P}(a \le X \le b)$$

$$= F(b) - F(a) = \int_{a}^{b} f(x) \, dx;$$

We call f(x) — the probability density function

$$\mathcal{P}(X \in (x, x + dx)) = f(x)dx.$$

RANDOM VARIABLE and NORMAL DISTRIBUTION

here come graphs of the pdf AND cdf for the standardised normal distribution:

http://www.itl.nist.gov: Jan 5th 2012

(本部) (本語) (本語)

э

- play: Wolfram's BELL CURVES
- play: Wolfram's Standard Normal Distribution Areas

CHANGE OF VARIABLE

Suppose we ave a RV X of a continuous type and we know its pdf f(x). Now, we have another RV that is functionally related to X:

Y = Y(X).

Can we say anything about the pdf for Y, g(y)?

3

CHANGE OF VARIABLE

Suppose we ave a RV X of a continuous type and we know its pdf f(x). Now, we have another RV that is functionally related to X:

$$Y = Y(X).$$

Can we say anything about the pdf for Y, g(y)? Simpler case: Y is a monotonic function of X. Then, from a simple geometrical reasoning (cf. the picture – next slide):

$$g(y) = \left|\frac{dx}{dy}\right| f(x)$$

The dx/dy is the derivative of X with respect to Y. Of course we have $\frac{dy}{dx} = \left(\frac{dx}{dy}\right)^{-1}$. For a non-monotonic y = y(x) dependence one must take into account that different regions of the X variable may be mapped into one (the same) region of the Y variable. The g(y) pdf in such a region will be a sum of f(x) pdf's multiplied by |dx/dy| over all the regions of X which have been mapped into the given region of Y. We shall return to this question when we will be more acquainted with some types of distributions of Rvs.

CHANGE OF VARIABLE

æ