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BASIC PROPERTIES

The RV of discrete type — the number of outcomes occurring, for
instance, during a given time (e.g. number of radioactive decays in a
sample of radioactive material) t;

X = Xt = 0, 1, 2, . . .

(also No of events in a given region of space — e.g. number of typing
errors per page)
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occurrences of Poisson distribution . . .

. . . are very (!) numerous. Just a few (from Wiki):

telephone calls arriving during a (short) period of time;

light quanta (photons) arriving at detecting system;

number of mutations on a strand of DNA (per unit length);

number of customers arriving at a counter;

number of cars arriving at a traffic light;

number of Losses/Claims;

number of radioactive decays;

requests for a particular document on a web server

number of typing errors in a page of a draft

. . . and many, many others.
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BASIC PROPERTIES

1

Wi(t) ≡ P(Xt = i) i = 0, 1, 2, . . .

2 Numbers of outcomes occurring in one time interval ∆t are
independent of each other, i.e. the number occurring in one time
interval is independent of the number that occurs in any other
disjoint time interval (Poisson process has no memory)

3 The probability that a single outcome will occur during a very short
time interval ∆t is PROPORTIONAL to the length of interval:
P (X∆t = 1)

P (X∆t = 1) ∝ ∆t

or, more precisely,

lim
∆t→0

W1(∆t)

∆t
= λ

4 The probability that more than one outcome will occur in such a
short time interval is negligible

lim
∆t→0

1−W0(∆t)−W1(∆t)

∆t
= 0
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The formula . . .

. . . defining the Poisson distribution

P(Xt = k;λ) =
λk

k!
e−λ

The usual basic parameters of the Poisson distributions are:

E{X} = λ V AR{X} = λ σ(X) =
√
λ.

Note: The mean and the variance of the Poisson distribution are equal
to each other and to the unique distribution parameter λ.
N.B. – try to calculate it yourself:

E(X) =

∞∑
k=0

k · λ
k

k!
e−λ =?

(the same – a bit harder – for σ2).
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The formula – derivation – . . .

∞∑
k=0

k · λ
k

k!
e−λ = e−λλ

∞∑
k=1

λk−1

(k − 1)!
= k − 1 = n = e−λλ

∞∑
n=0

λn

(n)!
=?

POISSON DISTRIBUTION



The Poisson distribution. . .

. . . can be viewed as a limiting case of the binomial distribution Wn
k for a

large number of trials n� 1 and a very small probability of single
success (the parameter p is close to zero; q = 1− p is close to unity).
The product n p is the Poisson distribution parameter λ.

outline of verification:

Wn
k (p) =

(
n
k

)
pkqn−k =

n(n− 1) . . . (n− k + 1)

k!
pk(1− p)n−k

= p =
λ

n

n(n− 1) . . . (n− k + 1)

k!

(
λ

n

)k (
1− λ

n

)n−k
= 1

(
1− 1

n

)
. . .

(
1− k − 1

n

)
λk

k!

(
1− λ

n

)n(
1− λ

n

)−k
As n→∞ while k and λ remain constant the k first factors and the last
one tend to unity . From the definition of the number e:

lim
n→∞

(
1− λ

n

)n
= e−λ.
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Example: (Rosenkrantz)

Hence, under the given limiting conditions,

Wn
k (p)→ e−λ λk

k!
k = 0, 1, 2, . . .

Example:
The probability of getting leukemia is p = 0.000248. Using the
approximation Bernoulli-to-Poisson find the P of eight or more leukemia
cases in a population of size n = 7076.
np = 7076× 0.000248 = 1.75 = λ.

P(X ≤ 7) =
∑

0≤x≤7

e−1.75 1.75x

x!
= 0.999518.

hence P(X ≥ 8) ≈ 1− 0.999518 = 0.000482.
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The Poisson distribution. . .

here come few graphs of Poisson distribution for different λ values:
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The Poisson distribution. . .

again:
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