STATISTICAL SAMPLE (and statistical population)

로 시 문

a population ...

STATISTICAL SAMPLE (and statistical population)

ヨト ヨ

a population ...

is the set of all the objects (or the totality of observation results with which we are concerned) that posses the property X (our RV), whether their number be finite or infinite.

The statistical inference consists in arriving at (quantitative) conclusions concerning a population where it is impossible or impractical to examine the entire set of observations that make up the population. Instead, we depend on a **subset** of observations — a **sample**.

Property (RV) X — has the pdf: f(X)We may form n samples, each of size m:

$\mathrm{RV}X$:	X_1	X_2		X_m
Sample No: 1	x_{11}	x_{12}		x_{1m}
2	x_{21}	x_{22}	•••	x_{2m}
			• • •	
j	x_{j1}	x_{j2}	•••	x_{jm}
		• • •	• • •	• • •
n	x_{n1}	x_{n2}		x_{nm}

every j-th sample has a pdf: $g_j = g_j(x_{j1}, x_{j2}, ..., x_{jm})$

A RANDOM SAMPLE...

STATISTICAL SAMPLE (and statistical population)

문 🕨 문

... is a sample for which:

• All sample constituents X_{jl} are independent of each other:

$$g_j(x_{j1}, x_{j2}, \dots, x_{jm}) = g_{j1}(x_{j1})g_{j2}(x_{j2})\dots g_{jm}(x_{jm})$$

2 have the same pdf as the X RV:

$$g_{j1}(x_{j1}) = g_{j2}(x_{j2}) = \ldots = g_{jm}(x_{jm}) = f(x)$$

A RANDOM SAMPLE, cntd.

STATISTICAL SAMPLE (and statistical population)

문▶ 문

The distribution (density) function of the RV X in our population should be written not as f(x) but rather as

$$f = f(x; \boldsymbol{\lambda})$$

where $\lambda = (\lambda_1, \lambda_2, ..., \lambda_p)$ — denotes the set of p distribution parameters (e.g.: μ, σ , etc.)

How do we go about finding λ ?

STATISTICAL SAMPLE (and statistical population)

문▶ 문

Any function of the random variables constituting a random sample that is used for estimation of unknown distribution parameters λ is called a

statistic: $S = S(X_1, X_2, \ldots, X_N)$

BUT

Any function of the random variables constituting a random sample that is used for **estimation** of unknown distribution parameters λ is called a

statistic: $S = S(X_1, X_2, \ldots, X_N)$

BUT — ANY STATISTIC S is also a RV!

STATISTIC, cntd.

$$\lambda_i \stackrel{?}{=} \mathsf{S}(X_1, X_2, \dots, X_N) \quad \text{NO!}$$
$$\lambda_i = E[\mathsf{S}(X_1, X_2, \dots, X_N)] \equiv \hat{\mathsf{S}}$$

more precisely:

$$\hat{\mathsf{S}} \to \hat{\mathsf{S}}_N$$
 or simply $\hat{\lambda}_N$.

We say: the estimated value of a statistic \hat{S} is said to be **estimator** of the parameter(s) λ ; the estimation is carried out on the basis of an N-element sample.

PROPERTIES OF ESTIMATORS

STATISTICAL SAMPLE (and statistical population)

< 注→

æ

PROPERTIES OF ESTIMATORS

a good estimator should be

consistent:

$$\forall \varepsilon > 0 \quad \lim_{N \to \infty} \mathcal{P}(|\hat{\lambda}_N - \lambda| < \varepsilon) = 1$$

unbiased:

$$\forall N \quad E(\boldsymbol{\lambda}_N) = \boldsymbol{\lambda} \text{ or}$$

the bias: $B_N(\boldsymbol{\lambda}) = E(\boldsymbol{\lambda}_N) - \boldsymbol{\lambda} = 0.$

The concept of asymptotically unbiased estimators:

$$\lim_{N\to\infty}B_N(\boldsymbol{\lambda})=0.$$

efficient:

two estimators: $\hat{\lambda}_N^*$ and $\hat{\lambda}_N^{**}$ and we have

$$\operatorname{VAR}\left(\hat{\lambda}_{N}^{*}\right) < \operatorname{VAR}\left(\hat{\lambda}_{N}^{**}\right)$$

then: $\hat{\lambda}_N^*$ is more efficient than $\hat{\lambda}_N^{**}$. The estimator which has the lowest variance VAR — is called the most efficient_ESTIMATOR