THE MAXIMUM LIKELIHOOD METHOD(MLM)

Suppose we have a sample

\ldots sample - $\mathbf{x}: X_{1}=x_{1}, X_{2}=x_{2}, \ldots, X_{N}=x_{N}$ (N random variables) and we compute the a posteriori Probability of obtaining such a sequence

$$
\begin{gathered}
d \mathcal{P}=f(\mathbf{x} ; \boldsymbol{\lambda}) d \mathbf{x}=f\left(x_{1}, \ldots, x_{N} ; \lambda_{1}, \ldots, \lambda_{p}\right) d x_{1} \ldots d x_{N} \quad \text { or } \\
d \mathcal{P}=\prod_{j=1}^{N} f\left(x_{j} ; \boldsymbol{\lambda}\right) d x_{j} ; \quad \boldsymbol{\lambda}=\lambda_{1}, \ldots, \lambda_{p}
\end{gathered}
$$

We introduce the Likelihood Function

$$
L=\prod_{j=1}^{N} f\left(x_{j} ; \boldsymbol{\lambda}\right)
$$

and the Likelihood Quotient with numerator and denominator being L calculated for $2 \boldsymbol{\lambda}$'s:

$$
Q=\frac{L\left(\boldsymbol{\lambda}_{1}\right)}{L\left(\boldsymbol{\lambda}_{2}\right)}=\frac{\prod_{j=1}^{N} f\left(x_{j} ; \boldsymbol{\lambda}_{1}\right)}{\prod_{j=1}^{N} f\left(x_{j} ; \boldsymbol{\lambda}_{2}\right)}
$$

parameters $\boldsymbol{\lambda}_{1}$ are Q times more likely to occur (or: more plausible) than the parameters $\boldsymbol{\lambda}_{2}$)

Example:

Suppose we have a coin which - as we happen to know - is not a fair one. Namely - one side is likely to happen twice as frequently as the second one but ... we do not know which one. we perform an experiment: flipping the coin 6 times and we get 4 heads (and 2 tails). We have two possibilities:

First case	Second case
$(1) \quad \mathcal{P}(H)=2 / 3 ; \quad \mathcal{P}(T)=1 / 3$ $(2) \quad \mathcal{P}(H)=1 / 3 ; \quad \mathcal{P}(T)=2 / 3$ $W_{4}^{6}=\binom{6}{4}\left(\frac{2}{3}\right)^{4}\left(\frac{1}{3}\right)^{2}$ $W_{4}^{6}=\binom{6}{4}\left(\frac{1}{3}\right)^{4}\left(\frac{2}{3}\right)^{2}$	

$$
\frac{L_{1}}{L_{2}}=\frac{\binom{6}{4}\left(\frac{2}{3}\right)^{4}\left(\frac{1}{3}\right)^{2}}{\binom{6}{4}\left(\frac{2}{3}\right)^{4}\left(\frac{1}{3}\right)^{2}}=\ldots=4
$$

Obviously, the first hypothesis about the \mathcal{P} 's is the better one.
will be the ones that maximise the $L: L=L_{\text {max }}$.
For the sake of convenience it is practical to use the logarithmic likelihood function:

$$
l=\ln L=\ln \left\{\prod_{j=1}^{N} f\left(x_{j} ; \boldsymbol{\lambda}\right)\right\}=\sum_{j=1}^{N} \ln f\left(x_{j} ; \boldsymbol{\lambda}\right)
$$

The maximum of L (or l) will be attained if:

$$
\frac{\partial l}{\partial \lambda_{i}}=0 ; \quad i=1,2, \ldots, p
$$

the derivative:

$$
\frac{\partial l}{\partial \lambda_{i}}=\sum_{j=1}^{N} \frac{\partial}{\partial \lambda_{i}}\left[\ln f\left(x_{j} ; \boldsymbol{\lambda}\right)\right]=\sum_{j=1}^{N} \frac{\partial f / \partial \lambda_{i}}{f} \equiv \sum_{j=1}^{N} \phi\left(x_{j} ; \boldsymbol{\lambda}\right)
$$

is called the information (of the sample) with respect to the estimated parameter λ_{i}.

Example:

$x_{1}, x_{2}, \ldots, x_{n}$ is drawn from the Poisson population with the distribution

$$
f(x)=e^{-\lambda} \frac{\lambda^{x}}{x!}
$$

(λ unknown). The L function is:

$$
L\left(x_{1}, \ldots, x_{n} ; \lambda\right)=\frac{e^{-n \lambda} \lambda^{x_{1}+x_{2}+\ldots+x_{n}}}{x_{1}!x_{2}!\ldots x_{n}!}
$$

We determine $\hat{\lambda}$ from the condition $d \ln L / d \lambda=0$. It gives $\hat{\lambda}=\left(x_{1}+x_{2}+\ldots+x_{n}\right) / n$.
The λ parameter is simply the arithmetic average.

Suppose we have an n-element sample:

$x_{1}, x_{2}, \ldots, x_{n}$ drawn from a normal distribution $N(\mu, \sigma)$.

$$
L\left(x_{1}, \ldots, x_{n} ; \mu, \sigma\right)=\frac{1}{\sigma^{n}(\sqrt{2 \pi})^{n}} \exp \left[-\frac{\left(x_{1}-\mu\right)^{2}+\ldots+\left(x_{n}-\mu\right)^{2}}{2 \sigma^{2}}\right]
$$

and its logarithm

$$
\ln L=l=-n \ln \sigma-\frac{n}{2} \ln 2 \pi-\frac{1}{2 \sigma^{2}} \sum_{i=1}^{n}\left(x_{i}-\mu\right)^{2}
$$

Now, we want to adjust μ and σ that maximise l. Thus

$$
\begin{aligned}
& \frac{\partial \ln L}{\partial \mu}=\frac{1}{\sigma^{2}} \sum_{i=1}^{n}\left(x_{i}-\mu\right)=0 \\
& \frac{\partial \ln L}{\partial \sigma}=-\frac{n}{\sigma}+\frac{1}{\sigma^{3}} \sum_{i=1}^{n}\left(x_{i}-\mu\right)^{2}=0
\end{aligned}
$$

and we obtain the MLM estimators:

$$
\hat{\mu}=\frac{1}{n} \sum_{i=1}^{n} x_{i} \quad \text { and } \quad \hat{\sigma}^{2}=\frac{1}{n} \sum_{i=1}^{n}\left(x_{i}-\mu\right)^{2}
$$

A very interesting and important case

is when the values of x_{i} which constitute the sample are drawn with different variances (accuracies). We have:

$$
\begin{aligned}
X_{1} & \hat{=} N\left(\mu, \sigma_{1}\right) \\
X_{2} & \hat{=} N\left(\mu, \sigma_{2}\right) \\
\vdots & \\
X_{n} & \hat{=} N\left(\mu, \sigma_{n}\right)
\end{aligned}
$$

The modified formulae are:
$L\left(x_{1}, \ldots, x_{n} ; \mu, \sigma\right)=\frac{1}{\sigma_{1} \sigma_{2} \ldots \sigma_{n}} \frac{1}{(\sqrt{2 \pi})^{n}} \exp \left[-\frac{\left(x_{1}-\mu\right)^{2}}{2 \sigma_{1}^{2}}-\ldots-\frac{\left(x_{n}-\mu\right)^{2}}{2 \sigma_{N}^{2}}\right]$
and its logarithm

$$
\ln L=l=-\sum_{i=1}^{n} \ln \sigma_{i}-\frac{n}{2} \ln 2 \pi-\sum_{i=1}^{n} \frac{\left(x_{i}-\mu\right)^{2}}{2 \sigma_{i}^{2}} .
$$

The MLM estimator for μ is a weighted mean:

A very interesting and important case

The MLM estimator for μ is a weighted mean:

$$
\hat{\mu}=\frac{\sum_{i=1}^{n} \frac{1}{\sigma_{i}^{2}} \times x_{i}}{\sum_{i=1}^{n} \frac{1}{\sigma_{i}^{2}}}
$$

with the weights being equal to the reciprocal of variances. (The more "accurate" value the bigger is its contribution to the $\hat{\mu}$.)

