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Simply reporting the value of an estimator e.g. (X),...

tells us nothing about the magnitude of the discrepancy that may exist
between the estimator and the estimated parameter (E{X} = p). What
would be the " confidence interval” of the estimated PARAMETER?
WE MAY DEFINE the confidence interval in the following manner:
© we choose a value of the confidence level:
l1—a; 0<a<l1,ora. Usually: a=0,01; 0,05; 0,1

@ In practice we are looking for a distribution parameter A

our data: a random sample X7, X5,..., X,

We form two statistics:
A= M(XL X, L X @)
)\2 = /\2(X17X2,...,Xn;0l)

The Confidence Interval < A = Ao — M\

A1 i A2 HAVE BEEN CHOSEN IS SUCH A WAY THAT THE PROBABILITY
FOR A TO "COVER” THE UNKNOWN A IS 1 — «

In other words: we are allowed to think that n repetitions of the same
procedure of estimating the Confidence Interval will produce n (different)
confidence intervals of which 100(1-«v) percent will contain the (looked

for) parameter \.
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EXAMPLE

The distribution of RV X in a given population is normal: N(u,0)

1 — unknown and we want to construct its confidence interval at the
confidence level 1 — «; the smd o is known (e.g. — it may be the error
of our single measurement)

The random sample is : X1, Xo,..., X,

The point estimator of y is the X statistic,

B 1 n o
X=-3"X, itspdfis N(u =
nz its pdf is (

i

The standardised statistic

X —

o 1%
=i

has the pdf N(0,1)

CONFIDENCE INTERVALS



EXAMPLE

Let 21 i 25 be the two quantiles of the STANDARDISED NORMAL
DISTRIBUTION for which

P21 < Z < z3) = Fy(22) = Fn(21) =1 — «

where Iy is the cumulative distribution of the STANDARDISED
NORMAL VARIABLE, whose distrb. function is fx(z)

ar = Fn(z1) / In(z z1 = z(ay)
l—as = Fn(z)= fN( Ydz; 29 = 2(1 — aw)

l—a = FN(ZQ)—FN(zl):/ F(2)dz
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EXAMPLE

Z1

oy = Fn(z)= In(2)dz; 21 = z(aq)

l—as = Fn(z)= Nz, 22 = 2(1 — )

1—a = Fn(z2)— Fn(z1) :/Zz fn(z)dz
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EXAMPLE

ay = Fn(z1) / fn(z z1 = z(aq)
l—as = Fn(z)= 3 fN() 29 = 2(1 — ag)

l—a = FN(ZQ)—FN(Zl):/ fn(z)dz

here comes the graph of the standardised normal cummulative
distribution and the o 5 regions
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2 Ny ) 0 Hl-a;)/y
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formulae . ..

Z(\O;%)U “ X< z(1 \—/gg)a
% z(aq)o Sus X 2(1 — ag)o

We may have 3 cases:
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We may have 3 cases. ..

1. LOWER one-sided confidence interval: a1 =0 z(a1) = —o0
z(a) = z(1 — «); the interval is:

<X —2(1 - oz)%, +oo>

1-a
o
2 0 Za-0X 2
I I L‘ I I I —+00
x
- z(1—-a)o

X —

2(1 — a)o

vn

we may be 1 — o certain that y is no less than X —
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We may have 3 cases. ..

2. UPPER one-sided confidence interval ae =0 2z(1 — ag) = o0
the interval is:

(—oo, X - z(a)\}%) = (—oo, X +2(1- a))

S

_ 1—
we may be 1 — « certain that p is not greater than X + z(\fa)a
n
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We may have 3 cases. ..

3. two-sided (symmetric) confidence interval (most frequent)
o
Q] = Qg = —

the interval is:

<X (%)% X+2(1-

no| 2

)= (ra-53)

af2 o2

2 N z(or2) 0 (1-ar)/y
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the former formulae assumed o to be known (given).

What if we don't know (have) it?

@ big sample; n > 30 — 100
we may estimate o with a fair accuracy by its unbiased estimator:

1 n
~ §F — 72
or St = n_lig_l(ycz z)

so the two-sided (symmetric) interval will be
(:f—z(l— %)i, p421- 32 )

@ the sample is not too numerous.
We introduce the new RV t:

X _ _
t= S# n—1= Su\/ﬁ
let's recall: 1 < . ) 1 < -
=— i— = — Xi—X
5 n;(x X2 s n—1;( )

The new RV has the so—called STUDENT's ¢t DISTRIBUTION



The new RV has the so—called STUDENT's

DISTRIBUTION

(or t distribution) with ¥ = n — 1 degrees of freedom. The only
parameter of this distribution is n (v).

Note: this is the case most frequently met in practice. That's why the
t-distribution is so very important. The STUDENT s distribution or,
simply, the t distribution is given by:

v+1
T
()

2y —(+D)/2
M= A ) (1+5)

RV’s Exp.Val. is: E{t} = 0;and its variance VAR{t} = y% (v>2)

2?
Note: by convention (tradition) a variable having the Student's
distribution is denoted by (small !) ¢.
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The STUDENT's distribution

ey
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The

UDENT's distribution
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Returning to the problem of interval estimation:

the quantiles z(«;) and z(«g) of the standardised normal distribution
have to be replaced by analogous quantiles: ¢(c) and t(aw) of the
Student’s distribution, so the two-sided (symmetric) interval will be

l—a=P ||t <t - ;an—l} H \/F’<t(1—1an 1)

_ 1 S - 1 S
X—t(l-Zan—1 <p<X+tl-—za,n-—1

(I-gan-Dr==<n (1=gan-17=
Dstb Alpha value — a =

0.90 | 0.95 | 0.975 | 0.99 | 0.995

t(10) || 1.37 | 1.81 | 223 | 2.76 | 3.17
t(30) | 1.31 | 1.70 | 2.04 | 2.46 | 2.75
£(100) || 1.29 | 1.66 | 1.99 | 2.37 | 2.67
N 128 | 1.64 | 1.96 | 2.33 | 2.56
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CONFIDENCE INTERVALS FOR VARIANCE

The RV X of our population follows a normal distribution — N (u, o) —
we ignore both distribution parameters. The sample size is < 30:
We introduce the "chi-square” STATISTIC:

5 nS? 2”: (X; — X)?

X = —
o2 o2

i=1

’

This statistic (RV) has a certain distribution — the so—called " chi-square’
distribution— again its only parameter is the number of degrees of
freedom: v =n—1

THE CHI-SQUARE DISTRIBUTION FUNCTION is given by the

formula:
1.2

O3 = (x?)" " e Bx

E{xX*} =v; VAR{X’} =2
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the " chi-square” distribution:

f()
05
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Unlikely to the most RV distribution functions the distribution x? is not
symmetric so even if constructing a two—sided (symmetric) confidence
interval we need TWO quantiles: x%(a/2) i x?(1 — a/2).

the two-sided (symmetric) confidence interval will be given by

1 1
l—a= P[X2(§a,n— )< x?*<x*(1- Pl 1)] or

1 n 1
— 2 2
1—a=P[x (ia,n—1)< 2 <x(1—§a,n—1)]
so we have
nS? 2 nS?

x2(1- a,n—1) x*(za,n —1)
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For big sample sizes

we may make use of the fact that the x? distributions tends (for big n)
to a normal distribution:

V2x2 = \/ﬁg — N(V2n—3,1)

Consequently, the two-sided (symmetric) confidence interval for the msd
o (the square-root of variance) will be given by:

SvV2n e Sv2n
Von —3+z2(1—a/2) S Van—3—2(1—a/2)
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The 2 distribution

should be always associated with a RV which describes the dispersion of
the square of the deviations of an RV around a fixed point. A natural

question would be: what if this central point is the "true” expected value
of X, ux (and not its estimator X. The answer is: The variable

= zn: (X —f;{X})Z _ 2”: (X ;;LX)Q
i=1 i=1

has indeed a x? distribution with v = n (!) degrees of freedom.
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