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Simply reporting the value of an estimator e.g. (X̄),. . .

tells us nothing about the magnitude of the discrepancy that may exist
between the estimator and the estimated parameter (E{X} = µ). What
would be the ”confidence interval” of the estimated PARAMETER?
WE MAY DEFINE the confidence interval in the following manner:

1 we choose a value of the confidence level:
1− α; 0 < α < 1, or α. Usually: α = 0, 01; 0,05; 0, 1

2 In practice we are looking for a distribution parameter λ
our data: a random sample X1, X2, . . ., Xn

We form two statistics:

λ1 = λ1(X1, X2, . . ., Xn;α)

λ2 = λ2(X1, X2, . . ., Xn;α)

The Confidence Interval
def
= ∆ = λ2 − λ1

λ1 i λ2 have been chosen is such a way that the probability
for ∆ to ”cover” the unknown λ is 1− α
In other words: we are allowed to think that n repetitions of the same
procedure of estimating the Confidence Interval will produce n (different)
confidence intervals of which 100(1-α) percent will contain the (looked
for) parameter λ.
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EXAMPLE

The distribution of RV X in a given population is normal: N(µ, σ)
µ — unknown and we want to construct its confidence interval at the
confidence level 1− α; the smd σ is known (e.g. – it may be the error
of our single measurement)
The random sample is : X1, X2, . . ., Xn

The point estimator of µ is the X̄ statistic,

X̄ =
1

n

n∑
i=1

Xi its pdf is N(µ,
σ√
n

)

The standardised statistic

Z =
X̄ − µ
σ/
√
n

has the pdf N(0, 1)
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EXAMPLE

Let z1 i z2 be the two quantiles of the STANDARDISED NORMAL
DISTRIBUTION for which

P(z1 < Z < z2) = FN (z2)− FN (z1) = 1− α

where FN is the cumulative distribution of the STANDARDISED
NORMAL VARIABLE, whose distrb. function is fN (z)

α1 = FN (z1) =

∫ z1

−∞
fN (z)dz; z1 ≡ z(α1)

1− α2 = FN (z2) =

∫ z2

−∞
fN (z)dz; z2 ≡ z(1− α2)

1− α = FN (z2)− FN (z1) =

∫ z2

z1

fN (z)dz
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EXAMPLE

α1 = FN (z1) =

∫ z1
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here comes the graph of the standardised normal cummulative
distribution and the α1,2 regions
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formulae . . .

P

[
z(α1) <

X̄ − µ
σ/
√
n
< z(1− α2)

]
= 1− α

z(α1)σ√
n

< X̄ − µ < z(1− α2)σ√
n

X̄ − z(α1)σ√
n

> µ > X̄ − z(1− α2)σ√
n

We may have 3 cases:
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We may have 3 cases. . .

1. LOWER one-sided confidence interval: α1 = 0 z(α1) = −∞
z(α2) = z(1− α); the interval is:(

X̄ − z(1− α)
σ√
n
, +∞

)

-

6

X̄
x

=⇒ +∞

X̄ − z(1− α)σ√
n

we may be 1− α certain that µ is no less than X̄ − z(1− α)σ√
n
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We may have 3 cases. . .

2. UPPER one-sided confidence interval α2 = 0 z(1− α2) =∞
the interval is:(

−∞, X̄ − z(α)
σ√
n

)
≡
(
−∞, X̄ + z(1− α)

σ√
n

)

-

6

X̄
x

⇐= −∞

X̄ +
z(1− α)σ√

n

we may be 1− α certain that µ is not greater than X̄ +
z(1− α)σ√

n
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We may have 3 cases. . .

3. two-sided (symmetric) confidence interval (most frequent)

α1 = α2 =
α

2
the interval is:(

X̄ + z(
α

2
)
σ√
n
, X̄ + z(1− α

2
)
σ√
n

)
≡
(
X̄ ∓ z(1− α

2
)
σ√
n

)

-

6

X̄
x

X̄ +
z(1− α/2)σ√

n
X̄ +

z(α/2)σ√
n
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the former formulae assumed σ to be known (given).
What if we don’t know (have) it?

1 big sample; n ≥ 30− 100
we may estimate σ with a fair accuracy by its unbiased estimator:

σ ≈ S∗ =

√√√√ 1

n− 1

n∑
i=1

(xi − x̄)2

so the two-sided (symmetric) interval will be(
x̄− z(1− α

2
)
S∗√
n
, x̄+ z(1− α

2
)
S∗√
n

)
2 the sample is not too numerous.

We introduce the new RV t:

t =
X̄ − µ
S

√
n− 1 =

X̄ − µ
S∗

√
n

let’s recall:
S2 =

1

n

n∑
i=1

(Xi − X̄)2 S∗2 =
1

n− 1

n∑
i=1

(Xi − X̄)2

The new RV has the so–called STUDENT’s t DISTRIBUTION
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The new RV has the so–called STUDENT’s
DISTRIBUTION

(or t distribution) with ν = n− 1 degrees of freedom. The only
parameter of this distribution is n (ν).

Note: this is the case most frequently met in practice. That’s why the
t-distribution is so very important. The STUDENT’s distribution or,
simply, the t distribution is given by:

f(t) =
1√
ν

Γ

(
ν + 1

2

)
√
π Γ
(ν

2

) (1 +
t2

ν

)−(ν+1)/2

RV’s Exp.Val. is: E{t} = 0; and its variance V AR{t} =
ν

ν − 2
; (ν > 2)

Note: by convention (tradition) a variable having the Student’s
distribution is denoted by (small !) t.
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The STUDENT’s distribution
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The STUDENT’s distribution
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Returning to the problem of interval estimation:

the quantiles z(α1) and z(α2) of the standardised normal distribution
have to be replaced by analogous quantiles: t(α1) and t(α2) of the
Student’s distribution, so the two-sided (symmetric) interval will be

1−α = P

[
|t| < t(1− 1

2
α, n− 1)

]
= P

[∣∣∣∣X̄ − µS

√
n− 1

∣∣∣∣ < t(1− 1

2
α, n− 1)

]
and

X̄ − t(1− 1

2
α, n− 1)

S√
n− 1

< µ < X̄ + t(1− 1

2
α, n− 1)

S√
n− 1

Dstb Alpha value — α =
0.90 0.95 0.975 0.99 0.995

t(10) 1.37 1.81 2.23 2.76 3.17
t(30) 1.31 1.70 2.04 2.46 2.75
t(100) 1.29 1.66 1.99 2.37 2.67
N 1.28 1.64 1.96 2.33 2.56
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CONFIDENCE INTERVALS FOR VARIANCE

The RV X of our population follows a normal distribution – N(µ, σ) –
we ignore both distribution parameters. The sample size is ≤ 30:
We introduce the ”chi-square” STATISTIC:

χ2 =
nS2

σ2
=

n∑
i=1

(Xi − X̄)2

σ2

This statistic (RV) has a certain distribution – the so–called ”chi-square”
distribution— again its only parameter is the number of degrees of
freedom: ν = n− 1
THE CHI–SQUARE DISTRIBUTION FUNCTION is given by the
formula:

f(χ2) =
1

Γ(ν)2ν
(
χ2
)ν−1

e−
1
2χ

2

E{χ2} = ν; V AR{χ2} = 2ν
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the ”chi-square” distribution:
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Unlikely to the most RV distribution functions the distribution χ2 is not
symmetric so even if constructing a two–sided (symmetric) confidence
interval we need TWO quantiles: χ2(α/2) i χ2(1− α/2).
the two–sided (symmetric) confidence interval will be given by

1− α = P [χ2(
1

2
α, n− 1) < χ2 < χ2(1− 1

2
α, n− 1)] or

1− α = P [χ2(
1

2
α, n− 1) <

nS2

σ2
< χ2(1− 1

2
α, n− 1)]

so we have

nS2

χ2(1− 1
2α, n− 1)

< σ2 <
nS2

χ2( 1
2α, n− 1)
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For big sample sizes

we may make use of the fact that the χ2 distributions tends (for big n)
to a normal distribution:√

2χ2 =
√

2n
S

σ
→ N(

√
2n− 3, 1)

Consequently, the two–sided (symmetric) confidence interval for the msd
σ (the square-root of variance) will be given by:

S
√

2n√
2n− 3 + z(1− α/2)

< σ <
S
√

2n√
2n− 3− z(1− α/2)
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The χ2 distribution

should be always associated with a RV which describes the dispersion of
the square of the deviations of an RV around a fixed point. A natural
question would be: what if this central point is the ”true” expected value
of X, µX (and not its estimator X̄. The answer is: The variable

χ2 =

n∑
i=1

(Xi − E{X})2

σ2
=

n∑
i=1

(Xi − µX)2

σ2

has indeed a χ2 distribution with ν = n (!) degrees of freedom.
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