STATISTICAL HYPOTHESES and their TESTS

STATISTICAL HYPOTHESES and their TESTS

프 > 프

a supposition (assertion, conjecture) concerning the (unknown) distribution of RV.

This distribution is:

$$f = f(X, \lambda) \equiv f(X, \lambda)$$

 $\begin{array}{ll} \text{HYPOTHESIS} & \left\{ \begin{array}{c} \text{parametric} & \left\{ \begin{array}{c} \text{simple} \\ \text{composite} \\ \text{non-parametric} \end{array} \right. \end{array} \right. \end{array}$

SIMPLE PARAMETRIC HYPOTHESIS — e.g. "N(0,1)" COMPOSITE PARAMETRIC HYPOTHESIS — e.g. " $N(0,\sigma)$; $\sigma =$?" NON-PARAMETRIC HYPOTHESIS — e.g. —

"the radioactive decay occurs in agreement with the Poisson distribution"

TO VERIFY A STATISTICAL HYPOTHESIS...

one must have a STATISTICAL SAMPLE:

 $X_1, X_2, \ldots, X_n \equiv \mathbf{X}$

USUALLY WE TRY TO VERIFY THE NULL HYPOTHESIS H_0 , WHICH IS A CERTAIN ,,ASSUMPTION" CONCERNING THE PARAMETER(S) OF THE DISTRIBUTION:

$$H_0 \equiv H_0 : \boldsymbol{\lambda} = \boldsymbol{\lambda}_0$$

VERSUS ANOTHER HYPOTHESIS — THE SO-CALLED alternative hypothesis H_1 :

$$H_1 \equiv H_1 : \boldsymbol{\lambda} = \boldsymbol{\lambda}_1$$

IN ORDER TO VERIFY A HYPOTHESIS WE FORM A STATISTIC — A FUNCTION OF THE RV WHICH THE STATISTICAL SAMPLE IS COMPOSED OF MORE PRECISELY — WE INSPECT WHAT IS THE PROBABILITY FOR

THE GIVEN VALUE OF OUR STATISTIC TO OCCUR IF THE HYPOTHESIS IS A CORRECT ONE.

<=>> = ∽Q@

example:

Our property X follows the Gaussian: $N(m, 1) - H_0 : (m = 0)$ $[H_1 : (m \neq 0)]$ random sample: X_1, \ldots, X_{10} ; $\bar{x} = 1, 01$ verification: \bar{x} is the value of statistic \bar{X} , which follows another Gaussian

$$N(0,\sigma/\sqrt{n}) = N(0,1/\sqrt{10})$$

we may standardise X in the usual way:

$$\bar{X} \to \frac{\bar{X} - 0}{\frac{1}{\sqrt{10}}} \equiv Z$$

$$\begin{array}{ll} P(|\bar{X}| \geq 1,01) & = & P(|z| \geq \bar{x}\sqrt{10}) = P(|z| \geq 1,01\sqrt{10} \approx 3,05) \\ & = & 2[1-i(3,05)] = 0,002 \end{array}$$

if we insist on the correctness of the H_0 hypothesis the obtained result is very, very little plausible.

SIGNIFICANCE LEVEL (of the test) — the probability $P = \alpha$ of rejecting a true hypothesis H_0 .

Usually we choose $\alpha = 0,01$ or $\alpha = 0,05$; (if the probability of obtaining a given value of the test statistic is $\leq \alpha$ we reject H_0), we have $\alpha = 0,01$ or $\alpha = 0,05$; (if the probability of obtaining a given value of the test statistic is $\leq \alpha$ we reject H_0).

OUR PROPERTY X FOLLOWS $N(m, 1) - H_0 : (m = 0) [H_1 : (m \neq 0)]$ WE FORM A RANDOM SAMPLE: $X_1, \ldots, X_{16}; \bar{x} = 0, 1$ verification: \bar{x} is a given value of the statistic \bar{X} , which follows the distribution

$$N(0,\sigma/\sqrt{n}) = N(0,1/4)$$

$$P(|\bar{X}| \ge 0, 1) = P(|z| \ge 0, 4) = 2[1 - i(0, 4)] \approx 0,69$$

 H_0 seems to be very sensible.

how do we proceed in order to TEST a statistical hypothesis ?

- **()** we define a TEST STATISTIC $T = T(\mathbf{X}, n)$
- **2** we choose the significance level α and the **CRITICAL REGION** (or *rejection region*) Z_{cr} of the values which may take on T, defined as

$$P(T \in Z_{cr}|H_0) = \alpha$$

(3) we form a sample (size n), and we calculate the value of t_n of T; if

$$t = t_n \in Z_{cr}$$

we reject H_0

N.B. The non-rejection (acceptance) of a hypothesis implies that the data do not give sufficient evidence to refute it. On the other hand, rejection implies that the SAMPLE EVIDENCE refutes it — or, putting it another way, there is a small probability of obtaining the sample information when, in fact, the hypothesis is true.

WE RISK TO COMMIT THE TWO TYPES OF ERROR:

- Rejection of a true hypothesis with the probability = α — the so-called type I error
- ACCEPTANCE OF A FALSE HYPOTHESIS WITH THE PROBABILITY = β

$$P(T \notin Z_{cr}|H_1) = \beta$$

— THE SO-CALLED TYPE II ERROR

	H_0 is true	H_0 is false
Accept H_0	Correct decision	Type II error
Reject H_0	Type I error	Correct decision

With a fixed significance level α , we try to chose the test statistic T and the critical region Z_{cr} in such a way that the probability of the second type error — β — be as little as possible A test, which for a given α minimises β is called the most powerful test for given H_0 versus a given alternative H_1 . The **POWER of the test** is the quantity $1 - \beta$, i.e. the probability of NOT rejecting the H_0 given that a specific alternative (H_1) is true.