PARAMETRIC STATISTICAL TESTS TESTS concerning the EXPECTED VALUE of RV

STATISTICAL HYPOTHESIS: $H_0: E\{X\} \equiv \mu = \mu_0$

— its "adversary" ALTERNATIVE HYPOTHESIS can be one of the following 3:

- a) $H_1: \mu = \mu_1 < \mu_0;$
- b) $H_1: \mu = \mu_1 > \mu_0;$
- c) $H_1: \mu = \mu_1 \neq \mu_0$.

TEST STATISTIC T is

• case **a**: σ known; (sample size big enough, so $\sigma \approx S(S^*)$; or σ given as an estimate of the single-measurement error). We form:

$$Z = \frac{\bar{X} - \mu_0}{\sigma} \sqrt{n}$$

If $H_0: \mu = \mu_0$ is true the RV Z obeys the distribution N(0,1)**2** case **b**: σ unknown, BUT the S-statistic value is known

$$t = \frac{\bar{X} - \mu_0}{S}\sqrt{n - 1}$$

If $H_0: \mu = \mu_0$ is true the RV t obeys the Student's distribution $t(\nu)$, where $\nu = n - 1$ is the number of the degrees of freedom.

σ known; T = U — normal distribution

σ known; T = U — normal distribution

σ known; T = U — normal distribution

σ estimated; T = t — follows Student's distribution

σ estimated; T = t — follows Student's distribution

σ estimated; T = t — follows Student distribution

