PARAMETRIC STATISTICAL TESTS testing the equality of EXPECTED VALUES of 2 RV's

the usual case:

Given RV X follows — in two (different) populations distributions

$$N(\mu_1, \sigma_1), \quad N(\mu_2, \sigma_2); \quad \sigma_1 = \sigma_2 = \sigma \quad (\text{unknown})$$

(these do not have to be The Normal distributions!) HYPOTHESIS TO BE VERIFIED: $H_0: \mu_1 = \mu_2 \equiv \mu$

We form two samples (each from every population):

sample 1: $X_1, X_2, \ldots, X_{n_1}$ size n_1

sample 2:
$$Y_1, Y_2, \ldots, Y_{n_2}$$
 size n_2

and we construct the "usual" estimators:

$$\bar{X} = \frac{1}{n_1} \sum_{k=1}^{n_1} X_k \quad \bar{Y} = \frac{1}{n_2} \sum_{k=1}^{n_2} Y_k$$

and

$$S_X^2 = \frac{1}{n_1} \sum_{k=1}^{n_1} (X_k - \bar{X})^2 \quad S_Y^2 = \frac{1}{n_2} \sum_{k=1}^{n_2} (Y_k - \bar{Y})^2$$

the two average values $ar{X}$ and $ar{Y}$ have normal distributions:

the two average values \bar{X} and \bar{Y} have normal distributions:

$$\bar{X} \stackrel{.}{=} N\left(\mu, \frac{\sigma}{\sqrt{n_1}}\right) \qquad \bar{Y} \stackrel{.}{=} N\left(\mu, \frac{\sigma}{\sqrt{n_2}}\right)$$

so their difference has the distribution:

$$\bar{X} - \bar{Y} = N\left(0, \sigma \sqrt{\frac{n_1 + n_2}{n_1 n_2}}\right)$$

as we have

$$\sigma^2(\bar{X} - \bar{Y}) = \sigma^2(\bar{X}) + \sigma^2(\bar{Y}) = \frac{\sigma^2}{n_1} + \frac{\sigma^2}{n_2} = \sigma^2 \frac{n_1 + n_2}{n_1 n_2}$$

Now — we have to transform the normal distribution into the Student's distribution (we don't know σ !) — following the same scheme we employed in the case of the confidence intervals:

$$N \stackrel{\circ}{=} U \equiv \frac{\bar{X} - \mu}{\sigma} \sqrt{n} \rightarrow \frac{\bar{X} - \mu}{S} \sqrt{n - 1} \equiv t \stackrel{\circ}{=} St$$

this transformation consists of two steps:

this transformation consists of two steps:

$$N \stackrel{\circ}{=} U \equiv \frac{\bar{X} - \mu}{\sigma} \sqrt{n} \rightarrow \frac{\bar{X} - \mu}{S} \sqrt{n - 1} \equiv t \stackrel{\circ}{=} St$$

• we divide U by the RV $\sqrt{n}S/\sigma$, whose square:

$$\frac{nS^2}{\sigma^2}$$
 follows the distribution χ^2_{n-1}

• we multiply the resulting quantity by the square-root of the number of degrees of freedom $\sqrt{n-1}$ For the case of 2 independent samples the variable analogous to nS^2/σ^2 is: $\frac{n_1S_X^2 + n_2S_Y^2}{\sigma^2}$ and the number of degrees of freedom is equal to: $n_1 - 1 + n_2 - 1$.

If so, the standardised variable \bar{v} \bar{v}

$$\frac{\Lambda - I}{\sigma \sqrt{\frac{n_1 + n_2}{n_1 n_2}}}$$

must be divided by $\sqrt{n_1S_X^2 + n_2S_Y^2}/\sigma$ and multiplied by $\sqrt{n_1 + n_2 - 2}$.

the standardised variable:

$$\frac{\bar{X} - \bar{Y}}{\sigma \sqrt{\frac{n_1 + n_2}{n_1 n_2}}}$$

must be divided by $\sqrt{n_1 S_X^2 + n_2 S_Y^2} / \sigma$ and multiplied by $\sqrt{n_1 + n_2 - 2}$.

$$\Delta = \frac{\bar{X} - \bar{Y}}{\sqrt{n_1 S_X^2 + n_2 S_Y^2}} \times \sqrt{\frac{n_1 n_2 (n_1 + n_2 - 2)}{n_1 + n_2}}$$

follows Student's distribution with $n_1 + n_2 - 2$ degrees of freedom. Testing $H_0: \mu_1 = \mu_2$ consists in verifying whether the value of Δ (calculated from the 2 samples) $\in U_{cr}(\alpha)$. The critical (rejection) region $U_{cr}(\alpha, H_1)$ is defined by appropriate quantiles of the Student distribution. Testing $H_0: \mu_1 = \mu_2$ - critical (rejection) region $U_{cr}(\alpha, H_1)$ may be: $(nn = n_1 + n_2 - 2)$

9
$$H_1: \mu_1 < \mu_2; \quad U_{cr} = \left(-\infty, -t(1-\alpha, nn)\right)$$

Testing $H_0: \mu_1 = \mu_2$ - critical (rejection) region $U_{cr}(\alpha, H_1)$ may be: $(nn = n_1 + n_2 - 2)$

2
$$H_1: \mu_1 > \mu_2; \quad U_{cr} = \left[+t(1-\alpha, nn), \infty \right)$$

Testing $H_0: \mu_1 = \mu_2$ - critical (rejection) region $U_{cr}(\alpha, H_1)$ may be: $(nn = n_1 + n_2 - 2)$

