NON-PARAMETRIC STATISTICAL TESTS TESTS OF INDEPENDENCE using the Pearson's test

NON-PARAMETRIC STATISTICAL TESTS TESTS OF INDEPENDENC

The problem:

We consider a 2-D RV (X, Y) of the discrete type (or categorical type) and we want to test the hypothesis:

are the two variables independent of each other?

Suppose: X has been divided (classified) into r intervals (classes) and Y has been divided (classified) into c intervals (classes)

We form a sample consisting on $n \quad X - Y$ pairs; n_{ik} — the number (frequency) of sample elements with X belonging to the *i*-th class and Y belonging to the *k*-th class. Let's denote the marginal frequencies:

$$n_{i.} = \sum_{k=1}^{c} n_{ik} \quad n_{\cdot k} = \sum_{i=1}^{r} n_{ik} \quad n = \sum_{k=1}^{c} \sum_{i=1}^{r} n_{ik}$$

In a similar way we may introduce ", straight" and ", marginal" probabilities: D(X = 1, k = 1, k

$$p_{ik} = \mathcal{P}(X \in < class >_i; Y \in < class >_k)$$

$$p_{i\cdot} = \mathcal{P}(X \in \langle class \rangle_i; any Y) \ p_{\cdot k} = \mathcal{P}(any \ X; Y \in \langle class \rangle_k)$$

$$\sum_{i}^{r} p_{i\cdot} = \sum_{k}^{c} p_{\cdot k} = \sum_{i,k}^{c} p_{ik} = 1$$

NON-PARAMETRIC STATISTICAL TESTS OF INDEPENDENC

The problem, cntd.

We may visualise the situation with the aid of the following table (*contingency table*, *two-way table*):

$$p_{ik} = \mathcal{P}(X \in < class >_i; Y \in < class >_k)$$

X↓	$Y \qquad c \text{ classes} \rightarrow$				
r classes	1	2		с	
1	n_{11}	n_{12}		n_{1c}	$\sum = n_{1.}$
2	n_{21}	n_{22}		n_{2c}	$\sum = n_{2.}$
:			n .,		
r	n_{r1}	n_{r2}		n_{rc}	$\Sigma = n_{r}$
	$\sum = n_{\cdot 1}$	$\sum = n_{\cdot 2}$		$\sum = n_{\cdot c}$	= n

(Summing the cell frequencies across the rows gives the marginal row frequencies n_{i} , and summing the cell frequencies down the columns gives the marginal column frequencies $n_{\cdot k}$.)

The problem, cntd.

The X - Y independence hypothesis is consistent with the statement: $p_{ik} = p_{i} \times p_{\cdot k}$. On the other hand, we have (it's not hard to show):

$$p_{i\cdot} = \frac{n_{i\cdot}}{n} \quad p_{\cdot k} = \frac{n_{\cdot k}}{n}$$

Consequently, the χ^2 statistic is:

$$\chi^{2} = n \sum_{i=1}^{r} \sum_{k=1}^{c} \frac{(n_{ik} - n_{i.}n_{.k}/n)^{2}}{n_{i.}n_{.k}}$$

What about the number of DoF? From the data we have to estimate r-1+c-1=r+c-2 parameters ($r \ p_i$. and $c \ p_{\cdot k}$ – but they are linked by two normalisation identities: $\sum p = 1$). Thus the number of DoF is: the number of inedpendent data – the number of estimated parameters. We have:

No of DoF =
$$rc - 1 - (r + c - 2) = (r - 1)(c - 1)$$
.

Note: the number of *independent* data is n-1 as n probabilities (class frequencies) p_{ik} are again normalised: $\sum_{i,k} p_{ik} = 1$.