NON-PARAMETRIC STATISTICAL TESTS TESTS OF INDEPENDENCE using the Pearson's test

We consider a 2-D RV (X, Y) of the discrete type (or categorical type) and we want to test the hypothesis: are the two variables independent of each other?
Suppose: X has been divided (classified) into r intervals (classes) and Y has been divided (classified) into c intervals (classes)
We form a sample consisting on $n X-Y$ pairs; $n_{i k}$ - the number (frequency) of sample elements with X belonging to the i-th class and Y belonging to the k-th class. Let's denote the marginal frequencies:

$$
n_{i}=\sum_{k=1}^{c} n_{i k} \quad n_{\cdot k}=\sum_{i=1}^{r} n_{i k} \quad n=\sum_{k=1}^{c} \sum_{i=1}^{r} n_{i k}
$$

In a similar way we may introduce ,,straight" and ,,marginal" probabilities:

$$
p_{i k}=\mathcal{P}\left(X \in<\text { class }>_{i} ; Y \in<\text { class }>_{k}\right)
$$

$$
p_{i .}=\mathcal{P}\left(X \in<\text { class }>_{i} ; \text { any } Y\right) p_{\cdot k}=\mathcal{P}\left(\text { any } X ; Y \in<\text { class }>_{k}\right)
$$

$$
\sum_{i}^{r} p_{i}=\sum_{k}^{c} p_{\cdot k}=\sum_{i, k} p_{i k}=1
$$

The problem, cntd.

We may visualise the situation with the aid of the following table (contingency table, two-way table):

$$
p_{i k}=\mathcal{P}\left(X \in<\text { class }>_{i} ; Y \in<\text { class }>_{k}\right)
$$

$\mathrm{X} \downarrow$	Y	c classes \rightarrow			
r classes	1	2	\ldots	c	
1	n_{11}	n_{12}	\ldots	$n_{1 c}$	$\sum=n_{1 \cdot}$
2	n_{21}	n_{22}	\ldots	$n_{2 c}$	$\sum=n_{2 \cdot}$
\vdots		\ldots	\ldots	$n_{i k}$	\ldots
r	$n_{r 1}$	$n_{r 2}$	\ldots	$n_{r c}$	$\sum=n_{r \cdot}$
	$\sum=n_{\cdot 1}$	$\sum=n_{\cdot 2}$	\ldots	$\sum=n_{\cdot c}$	$=\boldsymbol{n}$

(Summing the cell frequencies across the rows gives the marginal row frequencies n_{i}., and summing the cell frequencies down the columns gives the marginal column frequencies $n . k$.)

The problem, cntd.
The $X-Y$ independence hypothesis is consistent with the statement: $p_{i k}=p_{i \cdot} \times p_{\cdot k}$. On the other hand, we have (it's not hard to show):

$$
p_{i \cdot}=\frac{n_{i \cdot}}{n} \quad p_{\cdot k}=\frac{n_{\cdot k}}{n}
$$

Consequently, the χ^{2} statistic is:

$$
\chi^{2}=n \sum_{i=1}^{r} \sum_{k=1}^{c} \frac{\left(n_{i k}-n_{i} \cdot n \cdot k / n\right)^{2}}{n_{i} \cdot n \cdot k} .
$$

What about the number of DoF? From the data we have to estimate $r-1+c-1=r+c-2$ parameters ($r p_{i}$. and $c p_{\cdot k}-$ but they are linked by two normalisation identities: $\sum p=1$). Thus the number of DoF is: the number of inedpendent data - the number of estimated parameters. We have:

$$
\text { No of DoF }=r c-1-(r+c-2)=(r-1)(c-1) \text {. }
$$

Note: the number of independent data is $n-1$ as n probabilities (class frequencies) $p_{i k}$ are again normalised: $\sum_{i, k} p_{i k}=1$.

