THE METHOD OF LEAST SQUARES

The goal:
to measure (determine) an unknown quantity x (the value of a RV X) Realisation: n results: $y_{1}, y_{2}, \ldots, y_{j}, \ldots, y_{n}$, (the measured values of $\left.Y_{1}, Y_{2}, \ldots, Y_{j}, \ldots, Y_{n}\right)$ every result is encumbered with an error ε_{j} :

$$
y_{j}=x+\varepsilon_{j} ; \quad j=1,2, \ldots, n
$$

the fundamental assumption: the errors are normally distributed with the expected value equal to zero and with some standard deviation σ

$$
\varepsilon_{j} \rightarrow N(0, \sigma) ; \quad E\left(\varepsilon_{j}\right)=0 ; \quad E\left(\varepsilon_{j}^{2}\right)=\sigma^{2}
$$

if so, the probability of having a result in the range $\left(y_{j}, y_{j}+d y_{j}\right)$ equals to:

$$
d P_{j} \equiv d P\left(Y_{j} \in\left(y_{j}, y_{j}+d y_{j}\right)\right)=\frac{1}{\sqrt{2 \pi} \sigma} \exp \left[-\frac{\left(y_{j}-x\right)^{2}}{2 \sigma^{2}}\right] d y_{j}
$$

Realisation:

$$
d P_{j} \equiv d P\left(Y_{j} \in\left(y_{j}, y_{j}+d y_{j}\right)\right)=\frac{1}{\sqrt{2 \pi} \sigma} \exp \left[-\frac{\left(y_{j}-x\right)^{2}}{2 \sigma^{2}}\right] d y_{j}
$$

The likelihood function L is then:

$$
L=\prod_{j=1}^{n} \frac{1}{\sqrt{2 \pi} \sigma} \exp \left[-\frac{\left(y_{j}-x\right)^{2}}{2 \sigma^{2}}\right]
$$

and its logarithm l is:

$$
l=-\frac{1}{2 \sigma^{2}} \sum_{j=1}^{n}\left(y_{j}-x\right)^{2}+\quad \text { a constant }
$$

the demand $l=$ maximum $\rightarrow \sum_{j=1}^{n}\left(y_{j}-x\right)^{2}=$ minimum
$\sum_{j=1}^{n} \varepsilon_{j}^{2}=$ minimum
The sum of the squares of the errors should be as small as possible if the determination of \hat{x} is to be the most plausible.

Realisation, cntd.

The ML estimator is the arithmetic mean:

$$
\hat{x}=\bar{y}=\frac{1}{n} \sum_{j=1}^{n} y_{j}, \quad \sigma^{2}(\hat{x})=\frac{\sigma^{2}}{n}
$$

or, if the errors connected with individual measurements are different:

$$
\hat{x}=\frac{\sum_{j=1}^{n} w_{j} y_{j}}{\sum_{j=1}^{n} w_{j}}\left[w_{j}=\frac{1}{\sigma_{j}^{2}}\right], \quad \sigma^{2}(\hat{x})=\left(\sum_{j=1}^{n} \frac{1}{\sigma_{j}^{2}}\right)^{-1}
$$

Now, if \hat{x} was the best estimator of X (ML estimator) of $\mathrm{RV} X$ then the quantities

$$
\hat{\varepsilon_{j}}=y_{j}-\hat{x}
$$

are the best estimators of the quantities $\varepsilon_{j}!!$

We may construct a statistic:

$$
M=\sum_{j=1}^{n}\left(\frac{\hat{\varepsilon}_{j}}{\sigma_{j}}\right)^{2}=\sum_{j=1}^{n} \frac{\left(y_{j}-\hat{x}\right)^{2}}{\sigma_{j}^{2}}=\sum_{j=1}^{n}\left(y_{j}-\hat{x}\right)^{2} w_{j}
$$

If the ε_{j} have a normal distribution the RV M should have a χ^{2} distribution with $n-1$ degrees of freedom. This hypothesis may be verified (tested). A positive result of the test supports the data treatment. A negative one calls for an extra analysis of the determination procedure.

An example (from: S. Brandt, Data analysis

measuring the mass of the K^{0} meson: (all data in $\mathrm{MeV} / \mathrm{c}^{2}$)

$$
\begin{aligned}
& m_{1}=498.1 ; \quad \sigma_{1}=0.5, \\
& m_{2}=497.44 ; \quad \sigma_{2}=0.33, \\
& m_{3}=498.9 ; \quad \sigma_{3}=0.4, \\
& m_{4}=497.44 ; \quad \sigma_{4}=0.4, \\
& \hat{x}=\frac{\sum_{j=1}^{4} y_{j} \times \frac{1}{\sigma_{j}^{2}}}{\sum_{j=1}^{4} \frac{1}{\sigma_{j}^{2}}}=497.9 \quad \operatorname{VAR}(\hat{x})=\left[\sum_{j=1}^{4} \frac{1}{\sigma_{j}^{2}}\right]^{-1}=0.20 \\
& M=\sum_{j=1}^{4}\left(y_{j}-\hat{x}\right)^{2} \frac{1}{\sigma_{j}^{2}}=7.2 \quad \chi_{0.95 ; 3}^{2}=7.82
\end{aligned}
$$

there is no reason for discrediting the above scheme of establishing the value of x.

LINEAR REGRESSION

LINEAR REGRESSION is a powerfull tool for studying fundamental relationships between two (or more) RVs Y and X. The method is based on the method of least squares. Let's discuss the simplest case possible: we have a set of bivariate data, i.e. a set of $\left(x_{i}, y_{i}\right)$ values and we presume a linear relationship between the RV Y (dependent variable, response variable) and the explanatory (or regressor or predictor) variable X. Thus we should be able to write:

$$
\hat{y}_{i}=B_{0}+B_{1} \times x_{i}
$$

Note: Y_{i} are RVs, and y_{i} are their measured values; \hat{y}_{i} are the fitted values, i.e. the values resulting from the above relationship. We assume this relationship be true and we are interested in the numerical coefficients in the proposed dependence. We shall find them via an adequate treatement of the measurement data.

LINEAR REGRESSION, cntd.

As for x_{i} - these are the values of a random variable too, but of a rather different nature. For the sake of simplicity we should think about X_{i} (or the values x_{i}) as of RV that take on values practically free of any errors (uncertainties). We shall return to this (unrealistic) assumption later on. ${ }^{1}$ The errors ε_{i} are to be considered as differences between the measured (y_{i}) and the "fitted" quantities:

$$
\varepsilon_{i}=y_{i}-\hat{y}_{i} \equiv y_{i}-\left(B_{0}+B_{1} \times x_{i}\right)
$$

As in the former case, we shall try to minimise the sum of the error squares (SSE): $Q=\sum \varepsilon_{i}^{2}$; it is not hard to show that this sum may be decomposed into 3 summands:

$$
Q=S_{y y}\left(1-r^{2}\right)+\left(B_{1} \sqrt{S_{x x}}-r \sqrt{S_{y y}}\right)^{2}+n\left(\bar{y}-B_{0}+B_{1} \bar{x}\right)^{2} .
$$

[^0]
LINEAR REGRESSION, cntd.

$$
Q=S_{y y}\left(1-r^{2}\right)+\left(B_{1} \sqrt{S_{x x}}-r \sqrt{S_{y y}}\right)^{2}+n\left(\bar{y}-B_{0}+B_{1} \bar{x}\right)^{2} .
$$

The symbols used are:

$$
\begin{aligned}
S_{x x} & =\sum_{i}\left(x_{i}-\bar{x}\right)^{2}=\sum_{i} x_{i}^{2}-n \bar{x}^{2} \\
S_{y y} & =\sum_{i}\left(y_{i}-\bar{y}\right)^{2}=\sum_{i} y_{i}^{2}-n \bar{y}^{2} \\
S_{x y} & =\sum_{i}\left(x_{i}-\bar{x}\right)\left(y_{i}-\bar{y}\right)=\sum_{i} x_{i} y_{i}-n \bar{x} \bar{y}
\end{aligned}
$$

The \bar{x} and \bar{y} are the usual arithmetic means; finally

$$
r=\frac{S_{x y}}{\sqrt{S_{x x}} \sqrt{S_{y y}}}
$$

is the sample estimator of the correlation coefficient.
In order to minimise Q we are free to adjust properly the values of B_{0} and B_{1}. It is obvious that Q will be the smallest if the following equations are satisfied:

LINEAR REGRESSION, cntd.

$$
\begin{gathered}
Q=S_{y y}\left(1-r^{2}\right)+\left(B_{1} \sqrt{S_{x x}}-r \sqrt{S_{y y}}\right)^{2}+n\left(\bar{y}-B_{0}+B_{1} \bar{x}\right)^{2} . \\
B_{1} \sqrt{S_{x x}}-r \sqrt{S_{y y}}=0 \\
\bar{y}-B_{0}+B_{1} \bar{x}=0 .
\end{gathered}
$$

We shall denote the solutions for the values of B_{0} (intercept) and B_{1} (slope) coefficients which minimise the sum of squares in a special way:

$$
\hat{\beta}_{1}=\frac{r \sqrt{S_{x x}}}{\sqrt{S_{y y}}}=\frac{S_{x y}}{S_{x x}} \quad \hat{\beta}_{0}=\bar{y}-\hat{\beta}_{1} \bar{x}
$$

With the relation: $y=\hat{\beta}_{0}+\hat{\beta}_{1} x$ the SSE has minimum: $Q=S_{y y}\left(1-r^{2}\right)$. (N.B. this may be used to show that $|r|$ must be ≤ 1.) For $r>0$ the slope of the straight line is positive, and for $r<0-$ negative.

LINEAR REGRESSION, cntd.

The r quantity (the sample correlation coefficient) gives us a measure of the adequacy of the assumed model (linear dependence). It can be easily shown that the total sum of squares, $S S T=\sum_{i}\left(y_{i}-\bar{y}\right)^{2}$ can be decomposed into a sum of the regression sum of squares, $S S R$ and the introduced already error sum of squares, SSE:

$$
\begin{aligned}
\sum_{i}\left(y_{i}-\bar{y}\right)^{2} & =\sum_{i}\left(\hat{y}_{i}-\bar{y}\right)^{2}+\sum_{i}\left(y_{i}-\hat{y}_{i}\right)^{2} \\
\text { or } \quad S S T & =S S R+S S E
\end{aligned}
$$

$S S T$ is a quantity that constitutes a measure of total variability of the 'true' observations; $S S R$ is a measure of the variability of the fitted values, and $S S E$ is a measure of 'false' ('erroneous') variability. We have:

$$
1=\frac{S S R}{S S T}+\frac{S S E}{S S T}
$$

but: $S S R=S S T-S S E=S S T-S S T\left(1-r^{2}\right)=r^{2} S S T$. Thus the above unity is a sum of two terms: the first of them is the square of the sample correlation coefficient, r^{2} and it's sometimes called the coefficient of determination. The closer is r^{2} to 1 the better is the (linear) model.

LINEAR REGRESSION, cntd.

Up to now nothing has been said about the random nature of the fitted coefficients, B_{0}, B_{1}. We tacitly assume them to be some real numbers coefficients in an equation. But in practice we calculate them from formulae that contain values of some RV s. Conclusion: B_{0}, B_{1} should be also perceived as RV s, in that sense that their determination will be accomplished also with some margins of errors. The "linear relationship" should be written in the form:

$$
Y_{i}=B_{0}+B_{1} X_{i}+\varepsilon_{i}, \quad i=1, \ldots, n
$$

or perhaps ${ }^{2}$

$$
Y_{i}=\beta_{0}+\beta_{1} X_{i}+\varepsilon_{i}, \quad i=1, \ldots, n
$$

where ε_{i} are errors, i.e. all possible factors other than the X variable that can produce changes in Y_{i}. These errors are normally distributed with $E\left(\varepsilon_{i}\right)=0$ and $\operatorname{VAR}\left(\varepsilon_{i}\right)$ equal σ^{2}. From the above relation we have: $E\left(Y_{i}\right)=\beta_{0}+\beta_{1} x_{i}$ and $\operatorname{VAR}\left(Y_{i}\right)=\sigma^{2}$ (remember: any errors on x_{i} are to be neglected). The simple linear regression model has three unknown parameters: β_{0}, β_{1} and σ^{2}.

[^1]
LINEAR REGRESSION, cntd.

The method of least squares allows us to find the numerical values of the beta coefficients - theses are the ML estimators and they should be perceived as the expected values:

$$
\begin{aligned}
& E\left(\beta_{1}\right)=\hat{\beta}_{1}=\frac{r \sqrt{S_{x x}}}{\sqrt{S_{y y}}}=\frac{S_{x y}}{S_{x x}} \\
& E\left(\beta_{0}\right)=\hat{\beta}_{0}=\bar{y}-\hat{\beta}_{1} \bar{x}
\end{aligned}
$$

As for the variances we have:

$$
\begin{aligned}
\operatorname{VAR}\left(\beta_{1}\right) & =\frac{\sigma^{2}}{S_{x x}} \\
\operatorname{VAR}\left(\beta_{0}\right) & =\sigma^{2}\left(\frac{1}{n}+\frac{\bar{x}^{2}}{S_{x x}}\right)
\end{aligned}
$$

$$
\begin{array}{r}
E\left(\beta_{1}\right)=E\left\{\frac{S_{x y}}{S_{x x}}\right\}=E\left\{\sum_{i} \frac{\left(x_{i}-\bar{x}\right)\left(Y_{i}-\bar{Y}\right)}{S_{x x}}\right\} \stackrel{?}{=} E\left\{\sum_{i} \frac{\left(x_{i}-\bar{x}\right) Y_{i}}{S_{x x}}\right\} \\
=\sum_{i} \frac{\left(x_{i}-\bar{x}\right)\left(\beta_{0}+\beta_{1} x_{i}\right)}{S_{x x}}=\beta_{0} \sum_{i} \frac{\left(x_{i}-\bar{x}\right)}{S_{x x}}+\frac{\beta_{1}}{S_{x x}} \sum_{i}\left(x_{i}-\bar{x}\right) x_{i} \\
\stackrel{?}{=} 0+\frac{\beta_{1}}{S_{x x}} \sum_{i}\left(x_{i}-\bar{x}\right)\left(x_{i}-\bar{x}\right)=\frac{\beta_{1}}{S_{x x}} S_{x x}=\beta_{1} \\
\operatorname{VAR}\left(\beta_{1}\right)=\operatorname{VAR}\left\{\frac{S_{x Y}}{S_{x x}}\right\}=\operatorname{VAR}\left\{\sum_{i} \frac{\left(x_{i}-\bar{x}\right)\left(Y_{i}-\bar{Y}\right)}{S_{x x}}\right\} \\
\stackrel{?}{=} \sum_{i} \frac{\left(x_{i}-\bar{x}\right)^{2}}{S_{x x}^{2}} \times \operatorname{VAR}\left(Y_{i}\right)=\frac{S_{x x}}{S_{x x}^{x}} \times \sigma^{2}=\frac{\sigma^{2}}{S_{x x}}
\end{array}
$$

(some manipulations $-\stackrel{?}{=}$ - should be carefully justified; for β_{0} the verification can be done in a similar manner)
The third parameter of the simple linear regression model is σ^{2}. It may be shown that the statistic

verification, cntd.

$$
s^{2}=\frac{S S E}{n-2}=\frac{\sum_{i}\left(y_{i}-\hat{y}_{i}\right)^{2}}{n-2}
$$

is an unbiased estimator of σ^{2}.
(The $n-2$ in the denominator reflects the fact that the data are used for determining two coefficients). The $\mathrm{RV}(n-2) s^{2} / \sigma^{2}$ has a chi-square distribution with $n-2$ degrees of freedom. Replacing the values of σ^{2} in the formulae for the variances of the beta coefficients by the sample estimator s we conclude that these coefficients can be regarded as two standardised random variables:

$$
\frac{\beta_{1}-\hat{\beta}_{1}}{s \sqrt{S_{x x}}} \quad \text { and } \frac{\beta_{0}-\hat{\beta}_{0}}{s \sqrt{\frac{1}{n}+\frac{\bar{x}^{2}}{S_{x x}}}}
$$

verification, cntd.

The -values are the ML estimators and the denominators are the estimated standard errors of our coefficients. Both standardised variables have a Student's distribution with the $n-2$ degrees of freedom. Their confidence intervals can de determined in the usual way.

[^0]: ${ }^{1}$ One can imagine a situation when the values of the predictor variable x_{i} had been "carefully prepared" prior to measurement, i.e. any errors connected with them are negligible. On the other hand, the y_{i} values must be measured "on-line" and their errors should not be disregarded.

[^1]: ${ }^{2}$ This change of notation reflects the change of our atitude to the fitted coefficients; we should think about them as about RVs.

